Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Phycology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2024 . Peer-reviewed
Data sources: Research.fi
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Successful growth of coastal marine microalgae in wastewater from a salmon recirculating aquaculture system

Authors: Stian Borg-Stoveland; Vukasin Draganovic; Kristian Spilling; Tove M. Gabrielsen;

Successful growth of coastal marine microalgae in wastewater from a salmon recirculating aquaculture system

Abstract

AbstractAs global demand for seafood increases, recirculating aquaculture systems (RAS) have gained prominence for sustainable fish rearing. The sustainability of RAS still requires improvement, particularly managing the fish waste. Here we investigated the growth and nutrient removal capabilities of three microalgal species (Isocrysis galbana, Phaeodactylum tricornutum and Skeletonema marinoi) in aquaculture wastewater (AWW) mixed at different concentrations with cultivation medium. All three microalgae showed growth in different concentrations of the AWW obtained from an Atlantic salmon RAS facility in Agder, Norway. The average growth rates for I. galbana, S. marinoi and P. tricornutum at 75% AWW concentration were 0.31± 0.00 day-1, 0.34 ± 0.00 day-1, 0.25 ± 0.02 day-1, respectively. All three species effectively contributed to nitrate, ammonium and phosphate removal. When cultivated in 75% AWW, the microalgae achieved nearly complete removal of nitrite, nitrate, and phosphate, while approximately 90% of ammonium was also removed. Our results confirm the viability of AWW for microalgal cultivation on a laboratory scale suggesting this presents a sustainable route to further develop a circular bioeconomy in aquaculture.

Keywords

Nutrient removal, Microalgae, Phycoremediation, VDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497, Wastewater, RAS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid