Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Biology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
Advanced Biology
Article . 2025
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Number of Facial Hair Corresponds to Frequency of Spontaneous Face‐Touch in Humans

Authors: Martin Grunwald; Welda P. M. Pasatu; Jente Spille; Rene Haensel; Jens Stieler; Max Holzer; Mirjana Ziemer; +4 Authors

Number of Facial Hair Corresponds to Frequency of Spontaneous Face‐Touch in Humans

Abstract

AbstractPeople all over the world, independent of their culture or background, touch their faces up to 800 times per day. No other part of the body is touched as often as the face. Forehead, nose, and chin—the so‐called T‐zone of the face—are touched particularly frequently during spontaneous facial self‐touches (sFST). It is hypothesized that there is a relationship between the density of mechanoreceptors (inferred from facial hair distribution) and the frequency of spontaneous self‐touching. In order to indirectly measure the density of mechanoreceptors (cutaneous end organ complexes), the number of vellus and terminal hairs at 40 different measuring points on the face of 30 (15f/15m) healthy volunteers in study A is determined. In study B, the frequency of sFST at the same 40 measuring points in 66 (32f/34m) healthy persons is determined. Study A reveals that the number of facial hairs—in both sexes—is higher in the T‐zone than in other areas of the face. Study B reveals that the T‐zone is touched more frequently than other areas of the face. Skin areas of the face with a higher number of vellus hairs (and presumably higher innervation density) are touched particularly frequently during sFST.

Related Organizations
Keywords

Male, Adult, Young Adult, Touch, Face, Humans, Female, Middle Aged, Mechanoreceptors, Research Article, Hair

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid