Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Visualization and Computer Graphics
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relightable Detailed Human Reconstruction From Sparse Flashlight Images

Authors: Jiawei Lu; Tianjia Shao; He Wang; Yong-Liang Yang; Yin Yang; Kun Zhou;

Relightable Detailed Human Reconstruction From Sparse Flashlight Images

Abstract

We present a lightweight system for reconstructing human geometry and appearance from sparse flashlight images. Our system produces detailed geometry including garment wrinkles and surface reflectance, which are exportable for direct rendering and relighting in traditional graphics pipelines. By capturing multi-view flashlight images using a consumer camera equipped with an co-located LED (e.g., a cell phone), we obtain view-specific shading cues that aid in the determination of surface orientation and help disambiguate between shading and material. To enable the reconstruction of geometry and appearance from sparse-view flashlight images, we integrate a pre-trained model into a differentiable physics-based rendering framework. As the learned image features from synthetic data cannot accurately reflect the shading features on real images, which is crucial for the high-quality reconstruction of geometry details and appearance, we propose to jointly optimize the image feature extractor with two MLPs for SDF and BRDF prediction using the differentiable physics-based rendering. Compared with existing methods for relightable human reconstruction, our system is able to produce high-fidelity 3D human models with more accurate geometry and appearance under the same condition. Our code and data are available at http://github.com/Jarvisss/Relightable_human_recon.

Keywords

Human reconstruction, neural implicit field, /dk/atira/pure/subjectarea/asjc/1700/1711; name=Signal Processing, /dk/atira/pure/subjectarea/asjc/1700/1704; name=Computer Graphics and Computer-Aided Design, sparse view reconstruction, /dk/atira/pure/subjectarea/asjc/1700/1712; name=Software, /dk/atira/pure/subjectarea/asjc/1700/1707; name=Computer Vision and Pattern Recognition, human relighting

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green