
handle: 11568/1293575
The aim of this work is to develop a fast algorithm for approximating the matrix function $f(A)$ of a square matrix $A$ that is symmetric and has hierarchically semiseparable (HSS) structure. Appearing in a wide variety of applications, often in the context of discretized (fractional) differential and integral operators, HSS matrices have a number of attractive properties facilitating the development of fast algorithms. In this work, we use an unconventional telescopic decomposition of $A$, inspired by recent work of Levitt and Martinsson on approximating an HSS matrix from matrix-vector products with a few random vectors. This telescopic decomposition allows us to approximate $f(A)$ by recursively performing low-rank updates with rational Krylov subspaces while keeping the size of the matrices involved in the rational Krylov subspaces small. In particular, no large-scale linear system needs to be solved, which yields favorable complexity estimates and reduced execution times compared to existing methods, including an existing divide-and-conquer strategy. The advantages of our newly proposed algorithms are demonstrated for a number of examples from the literature, featuring the exponential, the inverse square root, and the sign function of a matrix. Even for matrix inversion, our algorithm exhibits superior performance, even if not specifically designed for this task.
Numerical computation of matrix exponential and similar matrix functions, hierarchically semiseparable, FOS: Mathematics, 65F60, 15B99, functions of matrices, Special matrices, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), rational Krylov, functions of matrices; hierarchically semiseparable; rational Krylov
Numerical computation of matrix exponential and similar matrix functions, hierarchically semiseparable, FOS: Mathematics, 65F60, 15B99, functions of matrices, Special matrices, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), rational Krylov, functions of matrices; hierarchically semiseparable; rational Krylov
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
