Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Matrix Analysis and Applications
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computing Functions of Symmetric Hierarchically Semiseparable Matrices

Computing functions of symmetric hierarchically semiseparable matrices
Authors: Angelo A. Casulli; Daniel Kressner; Leonardo Robol;

Computing Functions of Symmetric Hierarchically Semiseparable Matrices

Abstract

The aim of this work is to develop a fast algorithm for approximating the matrix function $f(A)$ of a square matrix $A$ that is symmetric and has hierarchically semiseparable (HSS) structure. Appearing in a wide variety of applications, often in the context of discretized (fractional) differential and integral operators, HSS matrices have a number of attractive properties facilitating the development of fast algorithms. In this work, we use an unconventional telescopic decomposition of $A$, inspired by recent work of Levitt and Martinsson on approximating an HSS matrix from matrix-vector products with a few random vectors. This telescopic decomposition allows us to approximate $f(A)$ by recursively performing low-rank updates with rational Krylov subspaces while keeping the size of the matrices involved in the rational Krylov subspaces small. In particular, no large-scale linear system needs to be solved, which yields favorable complexity estimates and reduced execution times compared to existing methods, including an existing divide-and-conquer strategy. The advantages of our newly proposed algorithms are demonstrated for a number of examples from the literature, featuring the exponential, the inverse square root, and the sign function of a matrix. Even for matrix inversion, our algorithm exhibits superior performance, even if not specifically designed for this task.

Keywords

Numerical computation of matrix exponential and similar matrix functions, hierarchically semiseparable, FOS: Mathematics, 65F60, 15B99, functions of matrices, Special matrices, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), rational Krylov, functions of matrices; hierarchically semiseparable; rational Krylov

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green