Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 1998 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Observations of the electric field fine structure associated with the westward traveling surge and large‐scale auroral spirals

Authors: M. L. Johnson; H. J. Opgenoorth; Lars Blomberg; J. S. Murphree; Tomas Karlsson; Göran Marklund; Carl-Gunne Fälthammar; +4 Authors

Observations of the electric field fine structure associated with the westward traveling surge and large‐scale auroral spirals

Abstract

The characteristics of the fine scale electric field associated with the westward traveling surge and large‐scale auroral spirals and surges are investigated using high‐resolution electric field, magnetic field, particle and UV imager observations from four eveningside auroral oval crossings by the Freja satellite. Three of the crossings were associated with signatures of auroral substorms and one crossing went directly through the head of a surge close in time and space to substorm onset. Three passes were adjacent to auroral spiral formations, one poleward of and one equatorward of such forms and one through the multiple arc region near the front of an extended region of auroral activity. The ambient electric field was found to intensify in the direction toward the spiral head (or the center of the auroral activity region) over a region comparable to the size of the visible auroral forms. These results confirm previous findings that the spiral or surge head is associated with negative space charge and an intense upward field‐aligned current. The fourth pass, directly through the surge head reveals a very complicated structure of the surge region. Narrowly structured, intense (up to 700 mV/m) and mostly converging electric fields associated with intense electron precipitation (of both high and medium energies) and balanced field‐aligned currents (up to 30 μA/m2) are seen near the edge of the surge head and adjacent to auroral structures in the wake. These narrow regions are embedded within more extended regions of intense high‐energy electron precipitation but very weak electric fields and field‐aligned currents. According to some existing models of the surge, a pronounced westward electric field component and a southward polarisation electric field is expected within the entire high‐conductivity region but evidence in support of this was not found in the data. Rather, these suggest that a significant part of the upward surge current is closed by distributed downward field‐aligned currents from the near surroundings. The Freja electric field is typically seen to intensify at the edges of or in‐between bright auroral structures and to decrease within the arcs similar to what is observed in the ionosphere. The surge electric field is, however, much more intense than previously observed or anticipated at these altitudes with characteristics rather similar to those observed in the auroral acceleration region. Since the particle data indicate that most of the acceleration takes place above Freja altitudes, it seems as if Freja traversed the lower part of the auroral acceleration region associated with the surge.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
bronze