
Distributed Artificial Intelligence-Generated Content (AIGC) has attracted significant attention, but two key challenges remain: maximizing subjective Quality of Experience (QoE) and improving energy efficiency, which are particularly pronounced in widely adopted Generative Diffusion Model (GDM)-based image generation services. In this paper, we propose a novel user-centric Interactive AI (IAI) approach for service management, with a distributed GDM-based AIGC framework that emphasizes efficient and cooperative deployment. The proposed method restructures the GDM inference process by allowing users with semantically similar prompts to share parts of the denoising chain. Furthermore, to maximize the users' subjective QoE, we propose an IAI approach, i.e., Reinforcement Learning With Large Language Models Interaction (RLLI), which utilizes Large Language Model (LLM)-empowered generative agents to replicate user interaction, providing real-time and subjective QoE feedback aligned with diverse user personalities. Lastly, we present the GDM-based Deep Deterministic Policy Gradient (GDDPG) algorithm, adapted to the proposed RLLI framework, to allocate communication and computing resources effectively while accounting for subjective user traits and dynamic wireless conditions. Simulation results demonstrate that G-DDPG improves total QoE by 15% compared with the standard DDPG algorithm.
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
