Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Pattern Analysis and Machine Intelligence
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reinforcement Learning With LLMs Interaction for Distributed Diffusion Model Services

Authors: Hongyang Du; Ruichen Zhang; Dusit Niyato; Jiawen Kang; Zehui Xiong; Shuguang Cui; Xuemin Shen; +1 Authors

Reinforcement Learning With LLMs Interaction for Distributed Diffusion Model Services

Abstract

Distributed Artificial Intelligence-Generated Content (AIGC) has attracted significant attention, but two key challenges remain: maximizing subjective Quality of Experience (QoE) and improving energy efficiency, which are particularly pronounced in widely adopted Generative Diffusion Model (GDM)-based image generation services. In this paper, we propose a novel user-centric Interactive AI (IAI) approach for service management, with a distributed GDM-based AIGC framework that emphasizes efficient and cooperative deployment. The proposed method restructures the GDM inference process by allowing users with semantically similar prompts to share parts of the denoising chain. Furthermore, to maximize the users' subjective QoE, we propose an IAI approach, i.e., Reinforcement Learning With Large Language Models Interaction (RLLI), which utilizes Large Language Model (LLM)-empowered generative agents to replicate user interaction, providing real-time and subjective QoE feedback aligned with diverse user personalities. Lastly, we present the GDM-based Deep Deterministic Policy Gradient (GDDPG) algorithm, adapted to the proposed RLLI framework, to allocate communication and computing resources effectively while accounting for subjective user traits and dynamic wireless conditions. Simulation results demonstrate that G-DDPG improves total QoE by 15% compared with the standard DDPG algorithm.

Related Organizations
Keywords

Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green