Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия Алтайского ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-Entropy FeCoCrNiMn and FeCoNiCrAl Alloys Coatings: Structure and Properties

Authors: X. Chen; Yu.F. Ivanov; V.E. Gromov; M.O. Efimov; S.V. Konovalov; V.V. Shlyarov; I.A. Panchenko;

High-Entropy FeCoCrNiMn and FeCoNiCrAl Alloys Coatings: Structure and Properties

Abstract

High-entropy alloys are a new class of materials consisting of at least five elements in an equiatomic or close to equiatomic ratio, which provides them with unique properties. Non-equiatomic high-entropy Fe-Co-Cr-Ni-Mn and Fe-Co-Cr-Ni-Al alloy coatings were applied to the 5083 alloy substrate using wire arc additive manufacturing and the cold metal transfer process. The structure, elemental composition, mechanical and tribological properties of coating / substrate systems were analyzed using modern methods of materials physics. The deposition of FeCoCrNiMn and FeCoNiCrAl HEA coatings on the surface of 5083 alloy was accompanied by the formation of gradients of elemental composition and mechanical properties. A transition layer with a thickness up to 450 μm was formed at the coating / substrate interface located at the coating-substrate boundary. The elemental composition gradient of the transition layer was studied, and a high level of chemical homogeneity of the coating was revealed. Alloying of the coating with substrate elements was observed. The alloying of the substrate with coating elements is accompanied by nonmonotonic changes of element composition in the 500 μm depth layer.

Related Organizations
Keywords

5083 alloy, покрытие, высокоэнтропийные сплавы FeCoCrNiMn и FeCoNiCrAl, состав, microhardness, coating, FeCoCrNiMn and FeCoNiCrAl high-entropy alloys, structure, сплав 5083, микротвердость, износостойкость, wear resistance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold