
In the current research, we continue our previous study regarding motion-based user biometric verification, which consumes sensory data. Sensory-based verification systems empower the continuous authentication narrative – as physiological biometric methods mainly based on photo or video input meet a lot of difficulties in implementation. The research aims to analyze how various components of sensor data from an accelerometer affect and contribute to defining the process of unique person motion patterns and understanding how it may express the human behavioral patterns with different activity types. The study used the recurrent long-short-term-memory autoencoder as a baseline model. The choice of model was based on our previous research. The research results have shown that various data components contribute differently to the verification process depending on the type of activity. However, we conclude that a single sensor data source may not be enough for a robust authentication system. The multimodal authentication system should be proposed to utilize and aggregate the input streams from multiple sensors as further research.
motion patterns recognition, recurrent autoencoders, рекурентні автокодувальники, Electronic computers. Computer science, QA75.5-76.95, біометрична верифікація, biometric verification, розпізнавання образів руху
motion patterns recognition, recurrent autoencoders, рекурентні автокодувальники, Electronic computers. Computer science, QA75.5-76.95, біометрична верифікація, biometric verification, розпізнавання образів руху
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
