Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Cognitive Computing in Engineering
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of an efficient method for object detection and localization in 3D space using RGBD cameras for autonomous systems

Authors: Nataliya Boyko;

Development of an efficient method for object detection and localization in 3D space using RGBD cameras for autonomous systems

Abstract

The work presents an efficient algorithm for object detection, orientation estimation, and isometric positioning in 3D space using RGBD camera data. The goal of the study is to improve the accuracy and processing speed of autonomous navigation and manipulation systems under conditions of limited computational resources. The proposed approach combines heuristic isometry estimation with segmentation methods (DBSCAN), plane estimation (RANSAC), and orientation analysis, enabling effective processing of scenes with planar backgrounds. The main advantage of the algorithm lies in its ability to operate in real time: the processing time for a single frame is only 20 ms, achieving object positioning accuracy up to 5.48 cm. The results of experimental research confirm a high level of accuracy and stability even under challenging conditions. The algorithm outperforms existing models in terms of processing speed while demonstrating comparable or superior positioning accuracy. The practical significance of the proposed method lies in its potential application in mobile robotics, automated warehouse systems, and machine vision systems where high autonomy and precision are required. The algorithm can also be adapted to a broader range of tasks due to its flexible hyperparameter tuning. A key limitation remains the requirement for object placement on a planar surface and the use of a depth camera, which necessitates a specific environmental setup. The proposed method makes a significant contribution to the advancement of computer vision and autonomous robotics technologies, opening prospects for its implementation in next-generation systems.

Keywords

RGBD camera data, Object detection, Electronic computers. Computer science, Science, Q, Isometry estimation, Planar backgrounds, QA75.5-76.95, Robotic navigation, Heuristic algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold