
handle: 11588/938190
Optimization is one of the research areas where quantum computing could bring significant benefits. In this scenario, a hybrid quantum–classical variational algorithm, the Quantum Approximate Optimization Algorithm (QAOA), is receiving much attention for its potential to efficiently solve combinatorial optimization problems. This approach works by using a classical optimizer to identify appropriate parameters of a problem-dependent quantum circuit, which ultimately performs the optimization process. Unfortunately, learning the most appropriate QAOA circuit parameters is a complex task that is affected by several issues, such as search landscapes characterized by many local optima. Moreover, gradient-based optimizers, which have been pioneered in this context, tend to waste quantum computing resources. Therefore, gradient-free approaches are emerging as promising methods to address this parameter-setting task. Following this trend, this paper proposes, for the first time, the use of genetic algorithms as gradient-free methods for optimizing the QAOA circuit. The proposed evolutionary approach has been evaluated in solving the MaxCut problem for graphs with 5 to 9 nodes on a noisy quantum device. As the results show, the proposed genetic algorithm statistically outperforms the state-of-the-art gradient-free optimizers by achieving solutions with a better approximation ratio.
Quantum Approximate Optimization Algorithm, Quantum optimization algorithms, Genetic algorithms; Quantum Approximate Optimization Algorithm; Quantum computing; Quantum optimization algorithms, Genetic algorithms, Quantum computing
Quantum Approximate Optimization Algorithm, Quantum optimization algorithms, Genetic algorithms; Quantum Approximate Optimization Algorithm; Quantum computing; Quantum optimization algorithms, Genetic algorithms, Quantum computing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 71 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
