
Multi-objective evolutionary algorithm based on Decomposition (MOEA/D) decomposes a multi-objective problem into a number of scalar optimization problems using uniformly distributed weight vectors. However, uniformly distributed weight vectors do not guarantee uniformity of solutions on approximated Pareto-Front. This study proposes an adaptive strategy to modify these scalarizing weights after regular intervals by assessing the crowdedness of solutions using crowding distance operator. Experiments carried out over several benchmark problems with complex Pareto-Fronts show that such a strategy helps in improving the convergence and diversity of solutions on approximated Pareto-Front. Proposed algorithm also shows better performance when compared with other state-of-the-art multi-objective algorithms over most of the benchmark problems.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
