Downloads provided by UsageCounts
handle: 2117/107422
Phylogenetic varieties related to equivariant substitution models have been studied largely in the last years. One of the main objectives has been finding a set of generators of the ideal of these varieties, but this has not yet been achieved in some cases (for example, for the general Markov model this involves the open “salmon conjecture”, see [2]) and it is not clear how to use all generators in practice. Motivated by applications in biology, we tackle the problem from another point of view. The elements of the ideal that could be useful for applications in phylogenetics only need to describe the variety around certain points of no evolution (see [13]). We produce a collection of explicit equations that describe the variety on a Zariski open neighborhood of these points (see Theorem 5.4). Namely, for any tree T on any number of leaves (and any degrees at the interior nodes) and for any equivariant model on any set of states ¿, we compute the codimension of the corresponding phylogenetic variety. We prove that this variety is smooth at general points of no evolution and, if a mild technical condition is satisfied (“d-claw tree hypothesis”), we provide an algorithm to produce a complete intersection that describes the variety around these points. Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística, Classificació AMS::14 Algebraic geometry::14D Families, fibrations, Geometry, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Representation theory, :92 Biology and other natural sciences::92D Genetics and population dynamics [Classificació AMS], Phylogenetic variety, Classificació AMS::60 Probability theory and stochastic processes::60J Markov processes, Geometry, Algebraic, Evolutionary model, Filogènia, Algebraic, Classificació AMS::92 Biology and other natural sciences::92D Genetics and population dynamics, Geometria algebraica, Classificació AMS::14 Algebraic geometry::14D Families, :14 Algebraic geometry::14D Families, fibrations [Classificació AMS], fibrations, :60 Probability theory and stochastic processes::60J Markov processes [Classificació AMS], Complete intersection, Phylogeny, Phylogenetic tree
Àrees temàtiques de la UPC::Matemàtiques i estadística, Classificació AMS::14 Algebraic geometry::14D Families, fibrations, Geometry, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Representation theory, :92 Biology and other natural sciences::92D Genetics and population dynamics [Classificació AMS], Phylogenetic variety, Classificació AMS::60 Probability theory and stochastic processes::60J Markov processes, Geometry, Algebraic, Evolutionary model, Filogènia, Algebraic, Classificació AMS::92 Biology and other natural sciences::92D Genetics and population dynamics, Geometria algebraica, Classificació AMS::14 Algebraic geometry::14D Families, :14 Algebraic geometry::14D Families, fibrations [Classificació AMS], fibrations, :60 Probability theory and stochastic processes::60J Markov processes [Classificació AMS], Complete intersection, Phylogeny, Phylogenetic tree
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 50 | |
| downloads | 53 |

Views provided by UsageCounts
Downloads provided by UsageCounts