Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Scientific Computing
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Robust Shifted Proper Orthogonal Decomposition: Proximal Methods for Decomposing Flows with Multiple Transports

A robust shifted proper orthogonal decomposition: proximal methods for decomposing flows with multiple transports
Authors: Philipp Krah; Arthur Marmin; Beata Zorawski; Julius Reiss; Kai Schneider;

A Robust Shifted Proper Orthogonal Decomposition: Proximal Methods for Decomposing Flows with Multiple Transports

Abstract

We present a new methodology for decomposing flows with multiple transports that further extends the shifted proper orthogonal decomposition (sPOD). The sPOD tries to approximate transport-dominated flows by a sum of co-moving data fields. The proposed methods stem from sPOD but optimize the co-moving fields directly and penalize their nuclear norm to promote low rank of the individual data in the decomposition. Furthermore, we add a robustness term to the decomposition that can deal with interpolation error and data noises. Leveraging tools from convex optimization, we derive three proximal algorithms to solve the decomposition problem. We report a numerical comparison with existing methods against synthetic data benchmarks and then show the separation ability of our methods on 1D and 2D incompressible and reactive flows. The resulting methodology is the basis of a new analysis paradigm that results in the same interpretability as the POD for the individual co-moving fields.

23 pages, 9 figures, published in SIAM, Code available: https://github.com/MOR-transport/sPOD

Keywords

proper orthogonal decomposition, Applications to the sciences, transport phenomena, Fluid Dynamics (physics.flu-dyn), FOS: Mathematics, vortex shedding, FOS: Physical sciences, forward-backward, Mathematics - Numerical Analysis, Physics - Fluid Dynamics, Numerical Analysis (math.NA), reactive flows, PDEs in connection with fluid mechanics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities