Views provided by UsageCounts
handle: 2117/11444
The complexity of a secret sharing scheme is defined as the ratio between the maximum length of the shares and the length of the secret. The optimization of this parameter for general access structures is an important and very difficult open problem in secret sharing. We explore in this paper the connections of this open problem with matroids and polymatroids. Matroid ports were introduced by Lehman in 1964. A forbidden minor characterization of matroid ports was given by Seymour in 1976. These results precede the invention of secret sharing by Shamir in 1979. Important connections between ideal secret sharing schemes and matroids were discovered by Brickell and Davenport in 1991. Their results can be restated as follows: every ideal secret sharing scheme defines a matroid, and its access structure is a port of that matroid. Our main result is a lower bound on the optimal complexity of access structures that are not matroid ports. Namely, by using the aforementioned characterization of matroid ports by Seymour, we generalize the result by Brickell and Davenport by proving that, if the length of every share in a secret sharing scheme is less than 3/2 times the length of the secret, then its access structure is a matroid port. This generalizes and explains a phenomenon that was observed in several families of access structures. In addition, we introduce a new parameter to represent the best lower bound on the optimal complexity that can be obtained by taking into account that the joint Shannon entropies of a set of random variables define a polymatroid. We prove that every bound that is obtained by this technique for an access structure applies to its dual as well. Finally, we present a construction of linear secret sharing schemes for the ports of the Vamos and the non-Desargues matroids. In this way new upper bounds on their optimal complexity are obtained, which are a contribution on the search of access structures whose optimal complexity lies between 1 and 3/2.
polymatroids, Combinatorial analysis, :05 Combinatorics::05B Designs and configurations [Classificació AMS], Classificació AMS::94 Information And Communication, :Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC], information, QA1-939, Secret sharing, Matroides, :94 Information And Communication, Circuits::94A Communication, information [Classificació AMS], Criptografia, optimization of secret sharing schemes for general access structures, Classificació AMS::05 Combinatorics::05B Designs and configurations, Matroids, Classificació AMS::94 Information And Communication, Circuits::94A Communication, information, ideal secret sharing schemes, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, secret sharing, Cryptography, Àrees temàtiques de la UPC::Informàtica::Seguretat informàtica::Criptografia, Circuits::94A Communication, :Informàtica::Seguretat informàtica::Criptografia [Àrees temàtiques de la UPC], matroids, Mathematics, Anàlisi combinatòria
polymatroids, Combinatorial analysis, :05 Combinatorics::05B Designs and configurations [Classificació AMS], Classificació AMS::94 Information And Communication, :Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC], information, QA1-939, Secret sharing, Matroides, :94 Information And Communication, Circuits::94A Communication, information [Classificació AMS], Criptografia, optimization of secret sharing schemes for general access structures, Classificació AMS::05 Combinatorics::05B Designs and configurations, Matroids, Classificació AMS::94 Information And Communication, Circuits::94A Communication, information, ideal secret sharing schemes, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, secret sharing, Cryptography, Àrees temàtiques de la UPC::Informàtica::Seguretat informàtica::Criptografia, Circuits::94A Communication, :Informàtica::Seguretat informàtica::Criptografia [Àrees temàtiques de la UPC], matroids, Mathematics, Anàlisi combinatòria
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 51 |

Views provided by UsageCounts