Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy and Astrophysics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2023
License: CC BY NC SA
Data sources: CONICET Digital
https://dx.doi.org/10.60692/yk...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/gx...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/7y...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.60692/q3...
Other literature type . 2023
Data sources: Datacite
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

K2 and TESS observations of symbiotic X-ray binaries: GX 1+4 and IGR J16194−2810

ملاحظات K2 و TESS لثنائيات الأشعة السينية التكافلية: GX 1+4 و IGR J16194−2810
Authors: G. J. M. Luna;

K2 and TESS observations of symbiotic X-ray binaries: GX 1+4 and IGR J16194−2810

Abstract

I analyze the K2 and TESS data taken in 2016, 2019, and 2021 of the symbiotic X-ray binaries GX 1+4 and IGR J16194−2810. GX 1+4 consists of a pulsar accreting from a red giant companion in a 1160-day orbit. Since 1984, the pulsar has shown a continuous spin-down rate ofṖ= −0.1177(3) mHZ yr−1. I report the detection of the spin period at an average value of 180.426(1) seconds as observed with the K2 mission and confirm that the spin period continues to increase at a rate of ∼1.61×10−7s s−1. The K2 and hard X-rays, as observed withSwift/BAT, varied in tandem, in agreement with proposals from other authors that the optical light arises from reprocessed X-ray emission. In the case of IGR J16194−2810, the X-ray and optical spectroscopy have been interpreted as arising from a neutron star accreting from an M2 III red giant companion. Its orbital period is unknown, though I report here the detection of a modulation with a period of 242.837 min and interpret it as the neutron star spin period. IGR J16194−2810 is thus the second symbiotic X-ray binary whose spin period has been detected in optical wavelengths. This period, however, was only detected during the TESS observations of Sector 12 in 2019. The non-detection of this modulation during the observations of Sector 39 in 2021 is perhaps related to a low inclination of the orbit.

Keywords

Pulsar Timing, Optical 3D Laser Measurement Systems Optimization, Astronomy, Computational Mechanics, FOS: Physical sciences, Neutron star, Light curve, STARS: INDIVIDUAL: GX 1+4, Astrophysics, Astrophysical Studies of Black Holes, Engineering, https://purl.org/becyt/ford/1.3, Pulsar, Spin (aerodynamics), Observation and Study of Gravitational Waves Phenomenon, https://purl.org/becyt/ford/1, Solar and Stellar Astrophysics (astro-ph.SR), High Energy Astrophysical Phenomena (astro-ph.HE), Physics, STARS: INDIVIDUAL: IGR J16194-2810, Astronomy and Astrophysics, Stars, Gamma-Ray Bursts and Supernovae Connections, X-ray binary, Astrophysics - Solar and Stellar Astrophysics, Physics and Astronomy, Physical Sciences, Thermodynamics, Astrophysics - High Energy Astrophysical Phenomena, Orbital period, BINARIES: SYMBIOTIC

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities