
This paper addresses the challenge of allocating heterogeneous resources among multiple agents in a decentralized manner. Our proposed method, LGTC-IPPO, builds upon Independent Proximal Policy Optimization (IPPO) by integrating dynamic cluster consensus, a mechanism that allows agents to form and adapt local sub-teams based on resource demands. This decentralized coordination strategy reduces reliance on global information and enhances scalability. We evaluate LGTC-IPPO against standard multi-agent reinforcement learning baselines and a centralized expert solution across a range of team sizes and resource distributions. Experimental results demonstrate that LGTC-IPPO achieves more stable rewards, better coordination, and robust performance even as the number of agents or resource types increases. Additionally, we illustrate how dynamic clustering enables agents to reallocate resources efficiently also for scenarios with discharging resources.
FOS: Computer and information sciences, Computer Science - Machine Learning, [SPI.AUTO] Engineering Sciences [physics]/Automatic, Statistics - Machine Learning, Resource Assignment, Distributed Control, Machine Learning (stat.ML), Graph Neural Network, [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, [SPI.AUTO] Engineering Sciences [physics]/Automatic, Statistics - Machine Learning, Resource Assignment, Distributed Control, Machine Learning (stat.ML), Graph Neural Network, [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
