Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radio Electronics, C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radio Electronics, Computer Science, Control
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radio Electronics, Computer Science, Control
Article
License: CC BY SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TWO ALGORITHMS FOR GLOBAL OPTIMIZATION OF ONE-VARIABLE FUNCTIONS BASED ON THE SMALLEST ESTIMATE DISTANCES BETWEEN EXTREMES AND THEIR NUMBER

Authors: Kodnyanko, V. A.;

TWO ALGORITHMS FOR GLOBAL OPTIMIZATION OF ONE-VARIABLE FUNCTIONS BASED ON THE SMALLEST ESTIMATE DISTANCES BETWEEN EXTREMES AND THEIR NUMBER

Abstract

Contex. Making managerial decisions is often associated with solving one-dimensional global optimization problems. The most important property of global optimization methods is their speed, which is determined by the number of calls to the objective function in the optimization process.Objective. Development of high-performance algorithms global for optimizing the function of one variable, based on conditions that allow you to bring the problem to a form that opens up the practical possibility of obtaining a solution with a given accuracy.Method. Two algorithms of conditional global optimization of a function of one variable are considered. The first is based on estimating the smallest distance between neighboring local extrema and allows you to find the global minimum of the goal function and, if necessary, all its local extrema. The second is suitable for finding the global minimum of a function if the number of local extrema in the uncertainty interval is known in advance. Both algorithms are based on segmentation methods of the initial uncertainty segment. The local extremum on a segment is determined by three or four points. An approach is proposed that, in most cases, allows localization of the extremum at three points, which provides savings in the calculation of digital filters, thereby contributing to an increase in the speed of the algorithm.Results. The results of solving optimization problems and data on the effectiveness of the proposed algorithms are presented. A comparative analysis of the speed of the developed algorithms and well-known algorithms is carried out on the example of solving test problems used in world practice to assess the effectiveness of global optimization algorithms. Examples of the practical use of algorithms are given. The analysis of the data obtained showed that according to the number of calls to the objective function, the algorithms in the sequential computing mode work several times faster than modern high-speed algorithms with which they were compared.Conclusions. The data presented indicate the efficiency and high speed of the proposed algorithms. Their speed will be even higher if the stated ideas of algorithmization are extended to parallel computations. This suggests that the proposed algorithms can find practical application in the global optimization of functions of the considered classes of problems.

Related Organizations
Keywords

Function of one variable, local minimum of a function, global minimum of a function, global optimization, Brent's method, algorithm performance., Функция одной переменной, локальный минимум функции, глобальный минимум функции, глобальная оптимизация, метод Брента, быстродействие алгоритма., Функція однієї змінної, локальний мінімум функції, глобальний мінімум функції, глобальна оптимізація, метод Брента, швидкодія алгоритму.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities