
В работе исследуется вторая краевая задача в полуполосе для параболического уравнения с оператором Бесселя, действующим по пространственной переменной, и частной производной Герасимова–Капуто по времени. Доказаны теоремы существования и единственности решения рассматриваемой задачи. Представление решения найдено в терминах интегрального преобразования с функцией Райта в ядре. Единственность решения доказана в классе функций быстрого роста. При частных значениях параметров, содержащихся в рассматриваемом уравнении, последнее совпадает с классическим уравнением диффузии. In the present paper, we investigate the second boundary value problem in a half-strip for a parabolic equation with the Bessel operator acting with respect to the spatial variable and the Gerasimov–Caputo partial time derivative. Theorems of existence and uniqueness of the solution of the problem under consideration are proved.The solution representation is found in terms of an integral transform with the Wright function in the kernel. The uniqueness of the solution is proved in the class of functions of rapid growth. The considered equation for particular values of the parameters coincides with the classical diffusion equation.
функция Бесселя, Wright function, Initial-boundary value problems for second-order parabolic equations, fractional derivative, Bessel operator, дробная производная, Bessel function, оператор Бесселя, Fractional partial differential equations, Solutions to PDEs in closed form, функция Райта
функция Бесселя, Wright function, Initial-boundary value problems for second-order parabolic equations, fractional derivative, Bessel operator, дробная производная, Bessel function, оператор Бесселя, Fractional partial differential equations, Solutions to PDEs in closed form, функция Райта
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
