Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik KRAUNC: Fizi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vestnik KRAUNC: Fiziko-Matematičeskie Nauki
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE DIRICHLET PROBLEM FOR AN ORDINARY DIFFERENTIAL EQUATION OF THE SECOND ORDER WITH THE OPERATOR OF DISTRIBUTED DIFFERENTIATION

ЗАДАЧА ДИРИХЛЕ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ОПЕРАТОРОМ РАСПРЕДЕЛЕННОГО ДИФФЕРЕНЦИРОВАНИЯ
Authors: B. I. Efendiev;

THE DIRICHLET PROBLEM FOR AN ORDINARY DIFFERENTIAL EQUATION OF THE SECOND ORDER WITH THE OPERATOR OF DISTRIBUTED DIFFERENTIATION

Abstract

В работе исследуется линейное обыкновенное дифференциальное уравнение второго порядка с оператором непрерывно распределенного дифференцирования, и для него изучается двухточечная краевая задача методом функции Грина. Вводится в рассмотрение специальная функция, в терминах которой строится функция Грина задачи Дирехле и доказываются основные свойства. Определены достаточные условия на ядро оператора непрерывно распределенного дифференцирования, гарантирующие выполнения условия разрешимости задачи Дирихле. В случае, когда однородная задача Дирихле для рассматриваемого однородного уравнения имеет нетривиальное решение получено неравенство типа Ляпунова для ядра оператора непрерывно распределенного дифференцирования. In this paper, we study a linear ordinary differential equation of the second order with operator of continuously distributed differentiation, and for him we study the two-point boundary value problem by the Greens function method. A special function is introduced, in terms of which the Green function of the Direchle problem is constructed and the main properties are proved. Sufficient conditions on the kernel of the operator of continuously distributed differentiation are determined that guarantee the fulfillment of the solvability condition for the Dirichlet problem. In the case when the homogeneous Dirichlet problem for the homogeneous equation under consideration has a nontrivial solution, an analog of the Lyapunov inequality is obtained for the kernel of a continuously distributed ifferentiation operator.

Keywords

operator of continuously distributed differentiation, Cauchy problem, fundamental solution, Science, fractional integro-differentiation operator, Q, оператор непрерывно распределенного дифференцирования, оператор дробного интегродифференцирования, неравенство типа Ляпунова, cauchy problem, dirichlet problem, задача Дирихле, Dirichlet problem, analog of Lyapunov’s inequality

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold