Downloads provided by UsageCounts
Advanced reactive distillation technologies (ARDT) are often overlooked during process synthesis due to their complexity. This work proposes the use of operating windows with additional features to identify suitable operating limits for ARDT. Data needed to construct the operating windows are thermodynamic properties, kinetic parameters, constraints of materials and experimental methods, and heuristics. In addition, two new concepts are proposed to represent complex features: representative components and a sliding window. Results include the identification of suitable operating limits for ARDT to help assess their feasibility early in process design. The proposed approach is demonstrated by case studies. Methyl acetate production can be carried out at low pressures (0.5–3.6 atm), while lactic acid purification requires vacuum conditions (0.3–0.8 atm) to avoid thermal degradation. Tert-amyl methyl ether production was evaluated in two scenarios where the effect of side reactions is evidenced in a reduction of the reaction window due temperature limits to favour the main reaction over side reaction. This study is the first to evaluate advanced reactive distillation technologies using a graphical representation in an operating window to aid process synthesis, where the results provide key selection insights.
660, Process intensification, Operating windows, Process synthesis, Reactive distillation
660, Process intensification, Operating windows, Process synthesis, Reactive distillation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 13 | |
| downloads | 10 |

Views provided by UsageCounts
Downloads provided by UsageCounts