Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Mobile Computing
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compressed Private Aggregation for Scalable and Robust Federated Learning Over Massive Networks

Authors: Natalie Lang; Nir Shlezinger; Rafael G. L. D’Oliveira; Salim El Rouayheb;

Compressed Private Aggregation for Scalable and Robust Federated Learning Over Massive Networks

Abstract

Federated learning (FL) is an emerging paradigm that allows a central server to train machine learning models using remote users' data. Despite its growing popularity, FL faces challenges in preserving the privacy of local datasets, its sensitivity to poisoning attacks by malicious users, and its communication overhead. The latter is additionally considerably dominant in large-scale networks. These limitations are often individually mitigated by local differential privacy (LDP) mechanisms, robust aggregation, compression, and user selection techniques, which typically come at the cost of accuracy. In this work, we present compressed private aggregation (CPA), that allows massive deployments to simultaneously communicate at extremely low bit rates while achieving privacy, anonymity, and resilience to malicious users. CPA randomizes a codebook for compressing the data into a few bits using nested lattice quantizers, while ensuring anonymity and robustness, with a subsequent perturbation to hold LDP. The proposed CPA is proven to result in FL convergence in the same asymptotic rate as FL without privacy, compression, and robustness considerations, while satisfying both anonymity and LDP requirements. These analytical properties are empirically confirmed in a numerical study, where we demonstrate the performance gains of CPA compared with separate mechanisms for compression and privacy for training different image classification models, as well as its robustness in mitigating the harmful effects of malicious users.

arXiv admin note: text overlap with arXiv:2208.10888

Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green