Downloads provided by UsageCounts
handle: 2117/13693 , 2117/1054
The objective of this work is twofold: First, we analyze the relation between the k-cosymplectic and the k-symplectic Hamiltonian and Lagrangian formalisms in classical field theories. In particular, we prove the equivalence between k-symplectic field theories and the so-called autonomous k-cosymplectic field theories, extending in this way the description of the symplectic formalism of autonomous systems as a particular case of the cosymplectic formalism in non-autonomous mechanics. Furthermore, we clarify some aspects of the geometric character of the solutions to the Hamilton-de Donder-Weyl and the Euler-Lagrange equations in these formalisms. Second, we study the equivalence between k-cosymplectic and a particular kind of multisymplectic Hamiltonian and Lagrangian field theories (those where the configuration bundle of the theory is trivial).
25 pages
Field theory (Physics), Geometria diferencial, Camps, Classificació AMS::53 Differential geometry::53D Symplectic geometry, FOS: Physical sciences, Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry, contact geometry, k-cosymplectic manifolds, k-symplectic manifolds, :70 Mechanics of particles and systems::70S Classical field theories [Classificació AMS], Differential geometry, 70S05, 53D05, 53D10, Camps, Teoria dels (Física), Manifolds, Classificació AMS::70 Mechanics of particles and systems::70S Classical field theories, Mathematical Physics, Àrees temàtiques de la UPC::Matemàtiques i estadística, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Mathematical Physics (math-ph), Lagrangian and Hamiltonian field theories, :53 Differential geometry::53D Symplectic geometry, contact geometry [Classificació AMS], multisymplectic manifolds, Teoria dels (Física), Varietats simplèctiques
Field theory (Physics), Geometria diferencial, Camps, Classificació AMS::53 Differential geometry::53D Symplectic geometry, FOS: Physical sciences, Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry, contact geometry, k-cosymplectic manifolds, k-symplectic manifolds, :70 Mechanics of particles and systems::70S Classical field theories [Classificació AMS], Differential geometry, 70S05, 53D05, 53D10, Camps, Teoria dels (Física), Manifolds, Classificació AMS::70 Mechanics of particles and systems::70S Classical field theories, Mathematical Physics, Àrees temàtiques de la UPC::Matemàtiques i estadística, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Mathematical Physics (math-ph), Lagrangian and Hamiltonian field theories, :53 Differential geometry::53D Symplectic geometry, contact geometry [Classificació AMS], multisymplectic manifolds, Teoria dels (Física), Varietats simplèctiques
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 77 | |
| downloads | 77 |

Views provided by UsageCounts
Downloads provided by UsageCounts