Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Antimicro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Antimicrobial Chemotherapy
Article . 2018 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections

Authors: Burger, Raphaël; Guidi, Monia; Calpini, Valérie; Lamoth, Frédéric; Decosterd, Laurent; Robatel, Corinne; Buclin, Thierry; +2 Authors

Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections

Abstract

Meropenem plasma concentration above a pathogen's MIC over the whole dosing interval (100% ƒT>MIC) is a determinant of outcome in severe infections. Significant variability of meropenem pharmacokinetics is reported in ICU patients.To characterize meropenem pharmacokinetics in variable CLCR or renal replacement therapy and assess the appropriateness of recommended regimens for MIC coverage.A pharmacokinetic analysis (NONMEM) was conducted with external model validation. Patient characteristics were tested on meropenem clearance estimates, differentiated according to the presence/absence of continuous renal replacement therapy (CRRT, CLCRRT or CLno-CRRT). Simulations evaluated the appropriateness of recommended dosing for achieving 100% fT>MIC in 90% of patients.A total of 101 patients were studied: median 63 years (range 49-70), 56% male, SAPS II 38 (27-48). 32% had a CLCR >60 mL/min, 49% underwent CRRT and 32% presented severe sepsis or septic shock. A total of 127 pathogens were documented: 76% Gram-negatives, 24% Gram-positives (meropenem MIC90 2 mg/L, corresponding to EUCAST susceptibility breakpoint). Three hundred and eighty plasma and 129 filtrate-dialysate meropenem concentrations were analysed: two-compartment modelling best described the data. Predicted meropenem CLno-CRRT was 59% lower in impaired (CLCR 30 mL/min) compared to normal (CLCR 100 mL/min) renal function. Simulations showed that recommended regimens appropriately cover MIC90 in patients with CLCR <60 mL/min. Patients with CLCR of 60 to <90 mL/min need 6 g/day to achieve appropriate coverage. In patients with CLCR ≥90 mL/min, appropriate exposure is achieved with increased dose, frequency of administration and infusion duration, or continuous infusion.Recommended meropenem regimens are suboptimal in ICU patients with normal or augmented renal clearance. Modified dosing or infusion modalities achieve appropriate MIC coverage for optimized antibacterial efficacy in meropenem-susceptible life-threatening infections.

Keywords

Male, Bacterial Infections / drug therapy, Renal Insufficiency / therapy, Metabolic Clearance Rate, Critical Illness, Plasma, 615, Humans, Anti-Bacterial Agents / pharmacokinetics, Computer Simulation, Prospective Studies, Renal Insufficiency, Aged, Bacterial Infections, Meropenem, Middle Aged, Renal Insufficiency / complications, Anti-Bacterial Agents, Renal Replacement Therapy, Anti-Bacterial Agents / administration & dosage, Meropenem / pharmacokinetics, Plasma / chemistry, Female, Meropenem / administration & dosage

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Green
hybrid