
Mental health problem is an increasingly common social issue leading to diseases such as depression, addiction, and heart attack. Facial expression is one of the most natural and universal signals for human beings to convey their emotional states and behavior intentions. Numerous studies have been conducted on automatic human emotion classification that can effectively establish the relationship between facial expression and mental health, while still suffer from intensive computation and low efficiency. Here, we present a memristive circuit design of Sequencer network for human emotion classification, which offers an environmentally friendly approach with low cost and easily deployable hardware. Specifically, a kind of eco-friendly memristor is fabricated using two-dimensional (2D) materials, and the corresponding testing performance is conducted to make sure its efficiency and stability. Then, the memristor-based Sequencer block, as a core component of Sequencer network, consisting of bidirectional long short-term memory (BiLSTM) circuit and some necessary function circuit modules is proposed. Based on this, the memristive Sequencer network can be achieved. Furthermore, the proposed memristive Sequencer network is applied for human emotion classification. The experimental results demonstrate that the proposed circuit has advantages in computational efficiency and cost, comparable to the main existing software-based methods. National Natural Science Foundation of China (grant no. 62001149) and the Natural Science Foundation of Zhejiang Province (grant no. LQ21F010009).
memristors, computational efficiency, circuit synthesis, costs, hardware, two dimensional displays, mental health
memristors, computational efficiency, circuit synthesis, costs, hardware, two dimensional displays, mental health
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
