Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sparse Autoencoders Using Non-smooth Regularization

Authors: Sajjad Amini; Shahrokh Ghaernmaghami;

Sparse Autoencoders Using Non-smooth Regularization

Abstract

Autoencoder, at the heart of a deep learning structure, plays an important role in extracting abstract representation of a set of input training patterns. Abstract representation contains informative features to demonstrate a large set of data patterns in an optimal way in certain applications. It is shown that through sparse regularization of outputs of the hidden units (codes) in an autoencoder, the quality of codes can be enhanced that leads to a higher learning performance in applications like classification. Almost all methods trying to achieve code sparsity in an autoencoder use a smooth approximation of l 1 norm, as the best convex approximation of pseudo l 0 norm. In this paper, we incorporate sparsity to autoencoder training optimization process using non-smooth convex l 1 norm and propose an efficient algorithm to train the structure. The non-smooth l 1 regularization have shown its efficiency in imposing sparsity in various applications including feature selection via lasso and sparse representation using basis pursuit. Our experimental results on three benchmark datasets show superiority of this term in training a sparse autoencoder over previously proposed ones. As a byproduct of the proposed method, it can also be used to apply different types of non-smooth regularizers to autoencoder training problem.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!