Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Smart Gridarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Smart Grid
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Smart Grid
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2019
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal sizing and multi‐energy management strategy for PV‐biofuel‐based off‐grid systems

Authors: Ashu Verma; Sumedha Sharma; Arun Kumar;

Optimal sizing and multi‐energy management strategy for PV‐biofuel‐based off‐grid systems

Abstract

This study proposes a comprehensive framework for developing a multi‐energy off‐grid microgrid with the decoupled flow of thermal and electrical energies in a rural setting. A carbon‐neutral microgrid with a hybrid generation system constituting a photovoltaic unit and a biofuel generator is proposed. In order to enhance the fuel utilisation efficiency, the biofuel generator is operated in combined cooling, heating, and power mode, and the recovered thermal energy forms the heat distribution network in the microgrid. The flexibility of system operation is improved by suitable multi‐energy (electrical and thermal) storage. Firstly, an optimal sizing framework has been developed for the system as a mixed integer linear programming model. Secondly, a coordinated multi‐energy management system (MEMS) has been developed for combined optimal dispatch of multiple generation and storage resources. The MEMS has been developed as a mixed integer non‐linear programming model, which minimises system operational cost while considering minimum battery degradation to prolong its lifetime. Finally, a detailed economic analysis of the proposed system has been presented, highlighting the levellised cost of energy and net present value. Extensive case studies and simulation results depict the effectiveness and suitability of the proposed MEMS for the rural off‐grid microgrid.

Related Organizations
Keywords

biofuel generator, net present value, optimal sizing framework, mems, mixed integer nonlinear programming model, combined optimal dispatch, storage resources, pv-biofuel-based off-grid systems, combined cooling heating and power mode, fuel utilisation efficiency, system operational cost, carbon-neutral microgrid, multi-energy off-grid microgrid, distributed power generation, levelised cost of energy, nonlinear programming, rural setting, energy management systems, decoupled flow, integer programming, power generation economics, photovoltaic power systems, hybrid generation system, multienergy management system, linear programming, cogeneration, system operation, TK1-9971, heat distribution network, biofuel, hybrid power systems, mixed integer linear programming model, Electrical engineering. Electronics. Nuclear engineering, photovoltaic unit, recovered thermal energy forms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
gold