Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Numerical Ma...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Numerical Mathematics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.60692/9k...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/pn...
Other literature type . 2023
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-uniform UE-spline quasi-interpolants and their application to the numerical solution of integral equations

شبه الملوثات غير المنتظمة لخط UE وتطبيقها على الحل العددي للمعادلات المتكاملة
Authors: M.-Y. Nour; A. Lamnii; Ahmed Zidna; D. Barrera;

Non-uniform UE-spline quasi-interpolants and their application to the numerical solution of integral equations

Abstract

Une construction de l'identité de Marsden pour les UE-splines est développée et une preuve complète est donnée. A l'aide de cette identité, un nouveau quasi-interpolant non-uniforme qui reproduit les espaces des fonctions polynomiales, trigonométriques et hyperboliques est défini. Des règles de quadrature efficaces basées sur l'intégration de ces schémas de quasi-interpolation sont dérivées et analysées. Ensuite, une formule en quadrature associée à une quasi-interpolation non uniforme avec la méthode de Nyström est utilisée pour résoudre numériquement les équations intégrales de Hammerstein et de Fredholm. Des résultats numériques qui illustrent l'efficacité de ces règles sont présentés.

Se desarrolla una construcción de la identidad de Marsden para UE-splines y se da una prueba completa. Con la ayuda de esta identidad, se define un nuevo cuasi-interpolante no uniforme que reproduce los espacios de funciones polinómicas, trigonométricas e hiperbólicas. Se derivan y analizan reglas de cuadratura eficientes basadas en la integración de estos esquemas de cuasi-interpolación. Luego, se utiliza una fórmula en cuadratura asociada con la cuasi-interpolación no uniforme junto con el método de Nyström para resolver numéricamente las ecuaciones integrales de Hammerstein y Fredholm. Se presentan resultados numéricos que ilustran la efectividad de estas reglas.

A construction of Marsden's identity for UE-splines is developed and a complete proof is given. With the help of this identity, a new non-uniform quasi-interpolant that reproduces the spaces of polynomial, trigonometric and hyperbolic functions are defined. Efficient quadrature rules based on integrating these quasi-interpolation schemes are derived and analyzed. Then, a quadrature formula associated with non-uniform quasi-interpolation along with Nyström's method is used to numerically solve Hammerstein and Fredholm integral equations. Numerical results that illustrate the effectiveness of these rules are presented.

تم تطوير بناء هوية مارسدن لخطوط UE وتم تقديم دليل كامل. بمساعدة هذه الهوية، يتم تعريف شبه قطبي غير منتظم جديد يعيد إنتاج مساحات الوظائف متعددة الحدود والمثلثية والزائدية. يتم اشتقاق قواعد التربيع الفعالة القائمة على دمج هذه المخططات شبه الاستيعابية وتحليلها. بعد ذلك، يتم استخدام صيغة تربيعية مرتبطة بالاستكمال شبه المنتظم غير المنتظم جنبًا إلى جنب مع طريقة نيستروم لحل معادلات هامرشتاين وفريدهولم المتكاملة عدديًا. يتم عرض النتائج العددية التي توضح فعالية هذه القواعد.

Keywords

Error estimate, Hammerstein integral equation, Quadrature Formulas, Computational Mechanics, Structural engineering, [INFO] Computer Science [cs], Quasi-interpolation, Quadrature (astronomy), Mathematical analysis, Convergence Analysis of Iterative Methods for Nonlinear Equations, Engineering, Spline (mechanical), Gaussian quadrature, FOS: Mathematics, Spline interpolation, Isogeometric Analysis in Computational Engineering, Clenshaw–Curtis quadrature, UE-splines, Integral equation, Numerical Analysis, Computer graphics (images), Fredholm integral equation, Statistics, Gauss–Kronrod quadrature formula, Bilinear interpolation, Nyström method, Animation, Applied mathematics, Computer science, Fracture Mechanics Modeling and Simulation, Mechanics of Materials, Electrical engineering, Physical Sciences, Numerical integration, Interpolation (computer graphics), Marsden’s identity, Trigonometry, Mathematics, Numerical analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid
Related to Research communities
INRAE