Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Information and Computation
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

k-Universality of Regular Languages

Authors: Duncan Adamson; Pamela Fleischmann; Annika Huch; Tore Koß; Florin Manea; Dirk Nowotka;

k-Universality of Regular Languages

Abstract

A subsequence of a word $w$ is a word $u$ such that $u = w[i_1] w[i_2] \dots w[i_{k}]$, for some set of indices $1 \leq i_1 < i_2 < \dots < i_k \leq \lvert w\rvert$. A word $w$ is $k$-subsequence universal over an alphabet $Σ$ if every word in $Σ^k$ appears in $w$ as a subsequence. In this paper, we study the intersection between the set of $k$-subsequence universal words over some alphabet $Σ$ and regular languages over $Σ$. We call a regular language $L$ \emph{$k$-$\exists$-subsequence universal} if there exists a $k$-subsequence universal word in $L$, and \emph{$k$-$\forall$-subsequence universal} if every word of $L$ is $k$-subsequence universal. We give algorithms solving the problems of deciding if a given regular language, represented by a finite automaton recognising it, is \emph{$k$-$\exists$-subsequence universal} and, respectively, if it is \emph{$k$-$\forall$-subsequence universal}, for a given $k$. The algorithms are FPT w.r.t.~the size of the input alphabet, and their run-time does not depend on $k$; they run in polynomial time in the number $n$ of states of the input automaton when the size of the input alphabet is $O(\log n)$. Moreover, we show that the problem of deciding if a given regular language is \emph{$k$-$\exists$-subsequence universal} is NP-complete, when the language is over a large alphabet. Further, we provide algorithms for counting the number of $k$-subsequence universal words (paths) accepted by a given deterministic (respectively, nondeterministic) finite automaton, and ranking an input word (path) within the set of $k$-subsequence universal words accepted by a given finite automaton.

Keywords

FOS: Computer and information sciences, Formal Languages and Automata Theory (cs.FL), T-NDAS, String Algorithms, Computer Science - Data Structures and Algorithms, Finite Automata, Subsequences, Regular Languages, Computer Science - Formal Languages and Automata Theory, Data Structures and Algorithms (cs.DS), Software, 004, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities