
Post-exercise speech contains rich physiological and linguistic cues, often marked by semantic pauses, breathing pauses, and combined breathing-semantic pauses. Detecting these events enables assessment of recovery rate, lung function, and exertion-related abnormalities. However, existing works on identifying and distinguishing different types of pauses in this context are limited. In this work, building on a recently released dataset with synchronized audio and respiration signals, we provide systematic annotations of pause types. Using these annotations, we systematically conduct exploratory breathing and semantic pause detection and exertion-level classification across deep learning models (GRU, 1D CNN-LSTM, AlexNet, VGG16), acoustic features (MFCC, MFB), and layer-stratified Wav2Vec2 representations. We evaluate three setups-single feature, feature fusion, and a two-stage detection-classification cascade-under both classification and regression formulations. Results show per-type detection accuracy up to 89$\%$ for semantic, 55$\%$ for breathing, 86$\%$ for combined pauses, and 73$\%$overall, while exertion-level classification achieves 90.5$\%$ accuracy, outperformin prior work.
6 pages, 3rd ACM International Workshop on Intelligent Acoustic Systems and Applications (IASA 25)
Machine Learning, FOS: Computer and information sciences, Sound (cs.SD), Sound, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language, Computation and Language (cs.CL), Audio and Speech Processing, Machine Learning (cs.LG)
Machine Learning, FOS: Computer and information sciences, Sound (cs.SD), Sound, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language, Computation and Language (cs.CL), Audio and Speech Processing, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
