Views provided by UsageCounts
handle: 2117/345553
The assumption of a fixed computational capacityat the Baseband Unit (BBU) pools in a Cloud Radio Access Network (C-RAN) deployment results in underutilized resourcesor unsatisfied users depending on traffic requirements. In thispaper a new strategy to predict the required resources based on Machine Learning techniques is proposed and analysed. SupportVector Machine (SVM), Time-Delay Neural Network (TDNN),and Long Short-Term Memory (LSTM) have been tested andcompared to select the best predicting approach. Instead of usinga regular synthetic scenario a realistic dense cell deployment overVienna city is used to validate the results. Authors show that theproposed solution reduces the unused resources average by 96 %
This work has been done under COST CA15104 IRACONEU project. It was supported in part by the Spanish ministryof science through the project RTI2018-099880-B-C32, with ERFD funds, and the Grant FPI-UPC provided by the UPC.
Peer Reviewed
Software-defined networking (Computer network technology), Xarxes definides per programari (Tecnologia de xarxes d'ordinadors), machine learning, Machine learning, Aprenentatge automàtic, :Enginyeria de la telecomunicació [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria de la telecomunicació, Cloud Radio Access Network
Software-defined networking (Computer network technology), Xarxes definides per programari (Tecnologia de xarxes d'ordinadors), machine learning, Machine learning, Aprenentatge automàtic, :Enginyeria de la telecomunicació [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria de la telecomunicació, Cloud Radio Access Network
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 50 |

Views provided by UsageCounts