
Polylactide (PLA) frameworks printed on a 3D printer are used for filling the bone defects. The osteotropic properties of 3D-PLA can be improved by combining with tricalcium phosphate (TCP) and mesenchymal stromal cells (MSCs). Objective. Study the reconstruction in the rat femurs after implanting 3D-printed implants based on PLA and TCP (3D-I) in combination with cultured allogeneic MSCs into defects in the distal metaphysis. Methods. 48 white laboratory rats (age 5–6 months) were used, which were randomly divided into groups: Control — 3D-I; Experiment-I — 3D-I, saturated MSCs; Experiment II — 3D-I, with injection of 0.1‒0.2 ml of medium with MSCs into the area of surgical intervention 7 days after implantation. 15, 30 and 90 days after the operation, histological (with histomorphometry) studies were conducted. Results. The area of 3D-I decreased with time in all groups and connective and bone tissues formed in different ratios. 15 days after the surgery, in the Experiment-I group, the area of the connective tissue was 1.9 and 1.6 times greater (p<0.001) in comparison to the Control and Experiment II; 30 days it was greater 1.6 times (p < 0.001) and 1.4 times (p=0.001), respectively. 30 days after the surgery, the area of newly formed bone in the Experiment-I group was 2.2 times (p < 0.001) less than in the Control. On the contrary, in the Experiment-II, the area of newly formed bone was 1.5 and 3.3 times greater (p < 0.001) compared to Experiment-I and Control, respectively. Conclusions. The studied 3D-I with time after their implantation into the metaphyseal defects of the rats’ femurs are replaced by connective and bone tissues. The use of 3D-I, saturated MSCs, 15 and 30 days after the surgery, caused excessive formation of connective tissue and slower bone formation. Local injection of MSCs 7 days after the implantation of 3D-I caused to the formation of a larger area of newly bone 30th day after surgery compared to 3D-I alone and 3D-I with MSCs.
bone defect, адитивні технології, Моделювання на щурах, регенерація кістки, трикальційфосфат, дефект кістки, tricalcium phosphate, мезенхімальні стромальні клітини, полілактид, bone regeneration, additive technologies, mesenchymal stromal cell, Rat model, polylactid
bone defect, адитивні технології, Моделювання на щурах, регенерація кістки, трикальційфосфат, дефект кістки, tricalcium phosphate, мезенхімальні стромальні клітини, полілактид, bone regeneration, additive technologies, mesenchymal stromal cell, Rat model, polylactid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
