Downloads provided by UsageCounts
handle: 2117/110899
The best-selling products manufactured nowadays are made in long series along rigid product value chains. Product repetition and continuous/stable manufacturing is seen as a chance for achieving economies of scale. Nevertheless, these speculative strategies fail to meet special customer demands, thus reducing the effective market share of a product in a range. Additive Manufacturing technologies open promising product customization opportunities; however, to achieve it, it is necessary to delay the production operations in order to incorporate the customer’s inputs in the product materialization. The study offered in the present paper compares different possible production strategies for a product (via conventional technologies and Additive Manufacturing) and assesses the degree of postponement that it would be recommended in order to meet a certain demand distribution. The problem solving is calculated by a program containing a stochastic mathematical model which incorporates extensive information on costs and lead times for the required manufacturing operations.
Additive Manufacturing, Àrees temàtiques de la UPC::Enginyeria mecànica::Processos de fabricació mecànica, :Enginyeria mecànica [Àrees temàtiques de la UPC], Supply Chain, :Enginyeria mecànica::Processos de fabricació mecànica [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria mecànica, Ultra-postponement, Manufacturing processes, Fabricació
Additive Manufacturing, Àrees temàtiques de la UPC::Enginyeria mecànica::Processos de fabricació mecànica, :Enginyeria mecànica [Àrees temàtiques de la UPC], Supply Chain, :Enginyeria mecànica::Processos de fabricació mecànica [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria mecànica, Ultra-postponement, Manufacturing processes, Fabricació
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 44 | |
| downloads | 50 |

Views provided by UsageCounts
Downloads provided by UsageCounts