Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cerebral Cortexarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cerebral Cortex
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2025
License: CC BY
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural mediation of the default-mode network in children with callosal agenesis

Authors: Céline Provins; Anjali Tarun Nahalka; Léa Schmidt; Vicki Anderson; Alissandra McIlroy; Amanda Wood; Oscar Esteban; +4 Authors

Structural mediation of the default-mode network in children with callosal agenesis

Abstract

Abstract Agenesis of the corpus callosum is a neurodevelopmental condition characterized by the partial or complete absence of the corpus callosum, the largest white matter bundle connecting the cerebral hemispheres. The default-mode network comprises bilateral frontal, temporal, and parietal regions that exhibit correlated activity at rest. Previous studies show that individuals with agenesis of the corpus callosum show overall preserved default-mode network functional connectivity, suggesting compensatory mechanisms for maintaining bilaterally correlated activity. In this study, we aimed to explore white matter pathways that support default-mode network-related networks in 15 children with agenesis of the corpus callosum and 27 typically developing controls, using combined diffusion and functional magnetic resonance imaging. A seed-based and dynamic functional connectivity approach enabled us to examine default-mode network spatial and temporal properties and their white matter substrates. While spatial default-mode network patterns were similar across groups, we found differences in temporal dynamics of 1 network and in white matter–default-mode network correspondence. These differences were either observed in white matter tracts directly associated with complete or partial absence of the corpus callosum or in white matter tracts such as the fornix and the anterior and posterior commissures, which have been previously implicated in neuroplasticity in agenesis of the corpus callosum. Our findings show that default-mode network dynamics can remain functionally preserved despite significant white matter alterations.

Keywords

Humans; Male; Female; Agenesis of Corpus Callosum/physiopathology; Agenesis of Corpus Callosum/diagnostic imaging; Agenesis of Corpus Callosum/pathology; Child; Magnetic Resonance Imaging; Corpus Callosum/diagnostic imaging; Corpus Callosum/physiopathology; Corpus Callosum/pathology; White Matter/diagnostic imaging; White Matter/physiopathology; Adolescent; Neural Pathways/physiopathology; Neural Pathways/diagnostic imaging; Default Mode Network/diagnostic imaging; Default Mode Network/physiopathology; Brain Mapping; Nerve Net/physiopathology; corpus callosum agenesis; default-mode network; neuroimaging; neuroplasticity; structure-function relationship

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid