Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubliCattarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biometrics
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Biometrics
Article . 2025
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel multilevel logistic cluster-weighted modeling approach

Authors: Luca Caldera; Chiara Masci; Andrea Cappozzo; Marco Forlani; Barbara Antonelli; Olivia Leoni; Francesca Ieva;

Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel multilevel logistic cluster-weighted modeling approach

Abstract

ABSTRACT Evaluating hospital performance and its relationship to patients’ characteristics is of utmost importance to ensure timely, effective, and optimal treatment. This is particularly relevant in areas and situations where the healthcare system must deal with an unexpected surge in hospitalizations, such as heart failure patients in the Lombardy Region of Italy during the COVID-19 pandemic. Motivated by this issue, the paper introduces a novel multilevel logistic cluster-weighted model for predicting 45-day mortality following hospitalization due to COVID-19. The methodology flexibly accommodates dependence patterns among continuous and dichotomous variables; effectively accounting for group-specific effects in distinct subgroups showing different attributes. A tailored classification expectation-maximization algorithm is developed for parameter estimation, and extensive simulation studies are conducted to evaluate its performance against competing models. The novel approach is applied to administrative data from the Lombardy Region, with the aim of profiling heart failure patients hospitalized for COVID-19 and investigating the hospital-level impact on their overall mortality. A scenario analysis demonstrates the model’s efficacy in managing multiple sources of heterogeneity, thereby yielding promising results in aiding healthcare providers and policymakers in the identification of patient-specific treatment pathways.

Keywords

Heart Failure, Male, FOS: Computer and information sciences, cluster-weighted models, SARS-CoV-2, multilevel models, COVID-19, expectation-maximization algorithm, healthcare system, Statistics - Applications, Hospitalization, Logistic Models, Italy, Ising model, Humans, Cluster Analysis, hierarchical data, Female, Computer Simulation, Applications (stat.AP), Hospital Mortality, Pandemics, Algorithms, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities