Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL Université de To...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Université de Tours
Article . 2025
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses

Authors: Jules Antoine Pereira Macedo; Bruno Giraudeau; null ESCIENT collaborators;

Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses

Abstract

In cluster randomized trials (CRTs) with a binary outcome, intervention effects are usually reported as odds ratios, but the CONSORT statement advocates reporting both a relative and an absolute intervention effect. With a simulation study, we assessed several methods to estimate a risk difference (RD) in the framework of a CRT with adjustment on both individual- and cluster-level covariates. We considered both a conditional approach (with the generalized linear mixed model [GLMM]) and a marginal approach (with the generalized estimating equation [GEE]). For both approaches, we considered the Gaussian, binomial, and Poisson distributions. When considering the binomial or Poisson distribution, we used the g-computation method to estimate the RD. Convergence problems were observed with the GEE approach, especially with low intra-cluster coefficient correlation values, small number of clusters, small mean cluster size, high number of covariates, and prevalences close to 0. All methods reported no bias. The Gaussian distribution with both approaches and binomial and Poisson distributions with the GEE approach had satisfactory results in estimating the standard error. Results for type I error and coverage rates were better with the GEE than GLMM approach. We recommend using the Gaussian distribution because of its ease of use (the RD is estimated in one step only). The GEE approach should be preferred and replaced with the GLMM approach in cases of convergence problems.

Keywords

g-computation, MESH: Humans, [STAT.ME] Statistics [stat]/Methodology [stat.ME], Statistical, MESH: Cluster Analysis, binary outcome, MESH: Linear Models, 510, generalized estimating equations, risk difference, MESH: Randomized Controlled Trials as Topic, MESH: Computer Simulation, generalized linear mixed models, MESH: Models, cluster randomized trial, MESH: Normal Distribution, [STAT.ME]Statistics [stat]/Methodology [stat.ME]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green