Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Experimental Study of the Cerium Dioxide - Silicon Interface of MIS Structures

Експериментальне дослiдження межi роздiлу дiоксид церiю – кремнiй МДН структур
Authors: L. M. Korolevych; A. V. Borisov; A. O. Voronko;

The Experimental Study of the Cerium Dioxide - Silicon Interface of MIS Structures

Abstract

The article is devoted to the actual task of studying a dielectric, which is an alternative to silicon dioxide in metal-insulator-semiconductor (MIS) structures. In metal-silicon dioxide-silicon structures, upon going to nanosize, the thickness of the dielectric film decreases so much that it becomes tunnel-transparent and its breakdown voltage decreases. These phenomena can be eliminated by replacing silicon dioxide with a dielectric with a higher dielectric constant. These dielectrics primarily include oxides of transition and rare-earth metals. The parameters and characteristics of the MIS structure are determined by various factors, but the properties of the dielectric and the dielectric-semiconductor interface play a special role. In previous works of the authors, it was theoretically proved that cerium dioxide from a number of candidate dielectrics should have the best quality of the interface with silicon. This work is devoted to a study aimed at determining the flat-band voltage and capacitance of MIS structures and at assessing the quality of the cerium dioxide-silicon interface. The study is carried out by the method of capacitance-voltage characteristics. For this, the high-frequency capacitance-voltage characteristics of the aluminum – cerium dioxide – silicon structures were measured at different temperatures. The capacity of the space charge region (SCR) in the enrichment and weak inversion modes of the near-surface layer of a semiconductoris considered. It is shown that the dependence of this capacitance in the (–2) degree on the voltage at the metal electrode cs-2(VG) is linear. The intersection of this line with the abscissa axis makes it possible to determine the flat-band voltage. The slope tangent of this linear dependence makes it possible to determine the energy density of the charge at the dielectric–semiconductor interface. It is shown that the charge density at the cerium dioxide – silicon interface corresponds to the minimum values of the charge density at the silicon dioxide – silicon interface. The absence of a shift in the capacitance-voltage characteristics of the structures under study with a change in temperature indicates the stability of the charge at the cerium dioxide - silicon interface.

Keywords

дiоксид церiю, MIS structure, flat-band voltage, напряжение плоских зон, capacitance-voltage characteristic (CV characteristic), напруга плоских зон, МДН структура, щiльнiсть заряду на межi подiлу дiелектрикнапiвпровiдник, TK5101-6720, МДП структура, вольт-фарадна характеристика (ВФХ), вольт-фарадная характеристика (ВФХ), cerium dioxide, charge density at the dielectric-semiconductor interface, диоксид церия, Telecommunication, плотность заряда на границе раздела диэлектрик-полупроводник

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities