
Este documento presenta un nuevo algoritmo de optimización metaheurística, robusto y muy eficiente, llamado Algoritmo de Optimización Inspirado en Círculo (CIOA), para resolver problemas de optimización de ingeniería restringidos y sin restricciones. La inspiración para el algoritmo propuesto consiste en formulaciones bien conocidas del círculo trigonométrico. CIOA se compara con otros cinco algoritmos muy famosos en diez problemas de optimización de funciones de referencia, cinco problemas de optimización restringidos de ingeniería del mundo real y también cuatro problemas de optimización estructural para vigas planas y espaciales sometidas a múltiples y diferentes tipos de restricciones. Los resultados obtenidos demuestran que el algoritmo propuesto es más eficiente que otros algoritmos famosos, contribuyendo a la solución precisa y rápida de problemas complejos de optimización.
Cet article présente un nouvel algorithme d'optimisation métaheuristique robuste et très efficace, appelé Circle Inspired Optimization Algorithm (CIOA), pour résoudre des problèmes d'optimisation d'ingénierie contraints et non contraints. L'inspiration pour l'algorithme proposé consiste en des formulations bien connues du cercle trigonométrique. CIOA est comparé à cinq autres algorithmes très célèbres dans dix problèmes d'optimisation de fonctions de référence, cinq problèmes d'optimisation sous contrainte d'ingénierie du monde réel, ainsi que quatre problèmes d'optimisation structurelle pour des fermes planes et spatiales soumises à des types de contraintes multiples et différents. Les résultats obtenus démontrent que l'algorithme proposé est plus efficace que d'autres algorithmes célèbres, contribuant à la résolution précise et rapide de problèmes d'optimisation complexes.
This paper presents a new, robust and very efficient metaheuristic optimization algorithm, called Circle Inspired Optimization Algorithm (CIOA), for solving constrained and unconstrained engineering optimization problems. The inspiration for the proposed algorithm consists of well-known formulations of the trigonometric circle. CIOA is compared with five other very famous algorithms in ten benchmark function optimization problems, five real-world engineering constrained optimization problems, and also four structural optimization problems for plane and spatial trusses subjected to multiple and different types of constraints. The results obtained demonstrate that the proposed algorithm is more efficient than other famous algorithms, contributing to the accurate and fast solution of complex optimization problems.
تقدم هذه الورقة خوارزمية تحسين جديدة وقوية وفعالة للغاية، تسمى خوارزمية التحسين المستوحاة من الدائرة (CIOA)، لحل مشكلات التحسين الهندسي المقيدة وغير المقيدة. يتكون الإلهام للخوارزمية المقترحة من صيغ معروفة للدائرة المثلثية. تتم مقارنة CIOA مع خمس خوارزميات أخرى مشهورة جدًا في عشر مشكلات لتحسين الوظائف المعيارية، وخمس مشكلات تحسين مقيدة هندسيًا في العالم الحقيقي، وأيضًا أربع مشكلات تحسين هيكلي للدعامات المستوية والمكانية الخاضعة لأنواع متعددة ومختلفة من القيود. تُظهر النتائج التي تم الحصول عليها أن الخوارزمية المقترحة أكثر كفاءة من الخوارزميات الشهيرة الأخرى، مما يساهم في الحل الدقيق والسريع لمشاكل التحسين المعقدة.
Test functions for optimization, Geometry, Metaheuristic, Real-world problems, Structural optimization, QA76.75-76.765, Engineering, Artificial Intelligence, FOS: Mathematics, Computer software, Swarm Intelligence Optimization Algorithms, Optimization problem, Metaheuristic algorithms, Constraint Handling, Civil and Structural Engineering, Trigonometric functions, Global Optimization, Geography, Multi-Objective Optimization, Multi-swarm optimization, Meta-optimization, Optimization Applications, Mathematical optimization, Topology Optimization in Structural Engineering, Derivative-free optimization, Computer science, Algorithm, Optimization algorithm, Engineering optimization, Computational Theory and Mathematics, Continuous optimization, Computer Science, Physical Sciences, Nature-Inspired Algorithms, Circle-Inspired Optimization Algorithm, Benchmark (surveying), Multiobjective Optimization in Evolutionary Algorithms, Trigonometry, Mathematics, Geodesy
Test functions for optimization, Geometry, Metaheuristic, Real-world problems, Structural optimization, QA76.75-76.765, Engineering, Artificial Intelligence, FOS: Mathematics, Computer software, Swarm Intelligence Optimization Algorithms, Optimization problem, Metaheuristic algorithms, Constraint Handling, Civil and Structural Engineering, Trigonometric functions, Global Optimization, Geography, Multi-Objective Optimization, Multi-swarm optimization, Meta-optimization, Optimization Applications, Mathematical optimization, Topology Optimization in Structural Engineering, Derivative-free optimization, Computer science, Algorithm, Optimization algorithm, Engineering optimization, Computational Theory and Mathematics, Continuous optimization, Computer Science, Physical Sciences, Nature-Inspired Algorithms, Circle-Inspired Optimization Algorithm, Benchmark (surveying), Multiobjective Optimization in Evolutionary Algorithms, Trigonometry, Mathematics, Geodesy
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
