
The Al-10 wt% Ni alloy was prepared by Controlled Diffusion Solidification (CDS) technology with samarium (Sm) modification. This study systematically investigated the effects of CDS on microstructure evolution and thermo-physical properties, while elucidating the underlying mechanisms of CDS and modification. Experiments demonstrated that CDS effectively refines the primary Al3Ni phase through the generation of abundant nucleation sites, achieved via subnormal cooling coupled with intensive melt agitation. CDS alone achieved an 80.2 % size reduction in primary Al3Ni phase and changed the shape factor from 10.7 to 3.2, thereby enhancing ultimate tensile strength and thermal conductivity. The introduction of samarium (Sm) modifier into the melt prior to CDS demonstrated superior efficacy. This hybrid approach synergistically enhanced both mechanical and thermal properties, yielding an ultimate tensile strength increase from 158.8 to 173.3 MPa, an elongation improvement from 8.9 % to 19.0 %, and a 12.2 % elevation in thermal conductivity from 193.0 to 216.5 W/(m·K). The CDS processed alloy exhibits homogeneous microstructure and optimized thermo-physical properties render it ideal for advanced thermal management systems.
Mining engineering. Metallurgy, TN1-997, Modification, Primary phase, Controlled diffusion solidification, Hypereutectic
Mining engineering. Metallurgy, TN1-997, Modification, Primary phase, Controlled diffusion solidification, Hypereutectic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
