Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://rshare.libra...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hyperspectral image analysis using a simultaneous Denoising and Intrinsic Order Selection (DIOS) approach

Authors: Farzam, Masoud (Author);

Hyperspectral image analysis using a simultaneous Denoising and Intrinsic Order Selection (DIOS) approach

Abstract

Recent hyperspectral applications demand for higher accuracy and speed. This thesis develops a hyperspectral application analysis solution to address challenges in the different steps of denoising, order selection and unmixing of hyperspectral application data. Currently, all these steps process the data in cascade to achieve the optimum results. While in existing approaches the desired criterion is different in these steps, the proposed simultaneous Denoising and Intrinsic Order Selection (DIOS) method unifies these criteria. This property not only makes more sense for the desired optimization problem, but also leads to a faster processing algorithm. Consequently, DIOS avoids possible error propagation from the denoising stage to the dimension estimation stage, leading to more accurate results. The proposed method is based on minimizing the estimated Mean Square Error (MSE). The success rate of existing dimension estimation methods declines with the increase of image dimension and the decrease of Signal-to-Noise Ratio (SNR). The most competitive method fails to detect the correct dimension in 30% of cases around 2dB. However, in simulation results DIOS is shown to be successful with a failure rate of about 5%. The proposed unmixing method, based on a simple least square estimation, improves the speed performance least 10 times for an average-sized data cube of 2MB. Compared to some well known existing approaches, the unmixing method improves the estimated MSE up to 60% for SNR<10dB. A new whitening process for hyperspectral applications with coloured noise is also proposed. Since the proposed method avoids the inversion of large matrices, computational complexity is substantially decreased. In the presence of coloured noise, simulation results show that the proposed whitening method lowers the MSE of unmixing and outperforms the existing whitening methods particularly when the noise correction factors increase.

Related Organizations
Keywords

Signal processing -- Digital techniques, Image processing -- Digital techniques, Electronic noise -- Prevention

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average