
The Internet of Electric Vehicles (IoEV) envisions a tightly coupled ecosystem of electric vehicles (EVs), charging infrastructure, and grid services, yet it remains vulnerable to cyberattacks, unreliable battery-state predictions, and opaque decision processes that erode trust and performance. To address these challenges, we introduce a novel Agentic Artificial Intelligence (AAI) framework tailored for IoEV, where specialized agents collaborate to deliver autonomous threat mitigation, robust analytics, and interpretable decision support. Specifically, we design an AAI architecture comprising dedicated agents for cyber-threat detection and response at charging stations, real-time State of Charge (SoC) estimation, and State of Health (SoH) anomaly detection, all coordinated through a shared, explainable reasoning layer; develop interpretable threat-mitigation mechanisms that proactively identify and neutralize attacks on both physical charging points and learning components; propose resilient SoC and SoH models that leverage continuous and adversarial-aware learning to produce accurate, uncertainty-aware forecasts with human-readable explanations; and implement a three-agent pipeline, where each agent uses LLM-driven reasoning and dynamic tool invocation to interpret intent, contextualize tasks, and execute formal optimizations for user-centric assistance. Finally, we validate our framework through comprehensive experiments across diverse IoEV scenarios, demonstrating significant improvements in security and prediction accuracy. All datasets, models, and code will be released publicly.
10 pages, 7 figures, Accepted at LCN'25
Machine Learning, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Emerging Technologies (cs.ET), Cryptography and Security, Artificial Intelligence, Networking and Internet Architecture, Cryptography and Security (cs.CR), Emerging Technologies, Machine Learning (cs.LG)
Machine Learning, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Emerging Technologies (cs.ET), Cryptography and Security, Artificial Intelligence, Networking and Internet Architecture, Cryptography and Security (cs.CR), Emerging Technologies, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
