Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/lcn656...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC ND
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards Trustworthy Agentic IoEV: AI Agents for Explainable Cyberthreat Mitigation and State Analytics

Authors: Dif, Meryem Malak; Bouchiha, Mouhamed Amine; Korba, Abdelaziz Amara; Ghamri-Doudane, Yacine;

Towards Trustworthy Agentic IoEV: AI Agents for Explainable Cyberthreat Mitigation and State Analytics

Abstract

The Internet of Electric Vehicles (IoEV) envisions a tightly coupled ecosystem of electric vehicles (EVs), charging infrastructure, and grid services, yet it remains vulnerable to cyberattacks, unreliable battery-state predictions, and opaque decision processes that erode trust and performance. To address these challenges, we introduce a novel Agentic Artificial Intelligence (AAI) framework tailored for IoEV, where specialized agents collaborate to deliver autonomous threat mitigation, robust analytics, and interpretable decision support. Specifically, we design an AAI architecture comprising dedicated agents for cyber-threat detection and response at charging stations, real-time State of Charge (SoC) estimation, and State of Health (SoH) anomaly detection, all coordinated through a shared, explainable reasoning layer; develop interpretable threat-mitigation mechanisms that proactively identify and neutralize attacks on both physical charging points and learning components; propose resilient SoC and SoH models that leverage continuous and adversarial-aware learning to produce accurate, uncertainty-aware forecasts with human-readable explanations; and implement a three-agent pipeline, where each agent uses LLM-driven reasoning and dynamic tool invocation to interpret intent, contextualize tasks, and execute formal optimizations for user-centric assistance. Finally, we validate our framework through comprehensive experiments across diverse IoEV scenarios, demonstrating significant improvements in security and prediction accuracy. All datasets, models, and code will be released publicly.

10 pages, 7 figures, Accepted at LCN'25

Keywords

Machine Learning, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Emerging Technologies (cs.ET), Cryptography and Security, Artificial Intelligence, Networking and Internet Architecture, Cryptography and Security (cs.CR), Emerging Technologies, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities