
This paper reviews the use of computational models to support the functioning of cyber-physical systems (CPS) in the parallel world of the Internet of Things (IoT). Existing models, methods, techniques and their implementation in this direction are studied. The necessity of using machine learning methods due to inaccuracy, fuzziness, incompleteness of the transmitted data from sensors of physical systems is substantiated. The task is to make informed decisions in a timely manner to support the functioning of real objects of a particular cyber-physical system in real time conditions.
cyber-physical systems; the Internet of Things; system methodology; machine learning; computer systems; sensors, киберфизические системы; интернет вещей; системная методология; машинное обучение; компьютерные системы; датчики, machine learning, Electronic computers. Computer science, system methodology, computer systems, кіберфізичні системи; інтернет речей; системна методологія; машинне навчання; комп'ютерні системи; датчики, QA75.5-76.95, cyber-physical systems, the Internet of Things, sensors
cyber-physical systems; the Internet of Things; system methodology; machine learning; computer systems; sensors, киберфизические системы; интернет вещей; системная методология; машинное обучение; компьютерные системы; датчики, machine learning, Electronic computers. Computer science, system methodology, computer systems, кіберфізичні системи; інтернет речей; системна методологія; машинне навчання; комп'ютерні системи; датчики, QA75.5-76.95, cyber-physical systems, the Internet of Things, sensors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
