Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theory and Building ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theory and Building Practice
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of AHP and GRA methods in energy efficiency potential’s assessment of envelopes from natural materials

Authors: Municipal Economy; Yuriy Biks; Pavlo Ryapolov; Georgiy Ratushnyak; Olga Ratushnyak;

Application of AHP and GRA methods in energy efficiency potential’s assessment of envelopes from natural materials

Abstract

The best choice of energy efficient envelope from variety of available materials is still the challenge. Therefore, the attempt of thermal performance multi-criteria evaluation of some building materials of natural origin for energy-efficient envelopes is conducted in present paper. Such types of walls from natural energy-efficient materials are considered in comparison assessment: hempcrete, adobe, strawbale panel, earthbag, cordwood, SIP (plywood+ecofiber), hempcrete+straw and energy efficient block. The influence of thermal inertia time, internal areal heat capacity, as well dimensionless index of thermal inertia D, the total thermal resistance of the walls Rtot-value, mass of the wall assembly and its cost have been taken into consideration as important influence factors. The multi-criteria numerical assessment of envelope’s energy efficiency potential was performed by two popular methods – Analytic Hierarchy Process (AHP) as the subjective weighting method and Grey Relation Analysis (GRA) as the objective weighting method. Both of methods allow to arrange the alternatives and could be applied as decision support tools in decision making (DM) process of choosing the best alternative in terms of multi-criteria assessment. For more objective analysis, by taking into account the variety of physical and physical-mechanical parameters of the wall assembly material, the concept of generalized index of the envelope energy efficiency potential is proposed. Conducted research has shown that the best envelope type in terms of of generalized index of energy efficiency potential has the hempcrete wall and hemcrete+straw wall, almost three times smaller has the wall of the earthbags. The walls from adobe, cordwood and strawbale panels have practically the equal value of generalized index of energy efficiency potential. It could be observed that AHP method shown more inhomogeneous results, than GRA. The possible reason for that is the difference in evaluation attitude in techniques - AHP is considered as the subjective method with pairwise comparison matrixes, while GRA is objective method of comparison.

Keywords

envelope structures, AHP method, GRA method, multicriterial assessment, потенціал енергоефективності, метод с узагальнений індекс потенціалу, energy efficiency potential, МАІ, СРА, thermal performance, огороджувальні конструкції, багатокритеріальна оцінка, теплотехнічні характеристики

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze