Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/1k...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/k8...
Other literature type . 2021
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spider Monkey Crow Optimization Algorithm With Deep Learning for Sentiment Classification and Information Retrieval

خوارزمية تحسين غراب قرد العنكبوت مع التعلم العميق لتصنيف المشاعر واسترجاع المعلومات
Authors: Aarti Chugh; Vivek Sharma; Sandeep Kumar; Anand Nayyar; Basit Qureshi; Manjot Kaur Bhatia; Charu Jain;

Spider Monkey Crow Optimization Algorithm With Deep Learning for Sentiment Classification and Information Retrieval

Abstract

L'augmentation épidémique de la croissance des avis en ligne a fait de la classification des sentiments un domaine fascinant de la recherche universitaire et industrielle. Les revues aident plusieurs domaines, ce qui est compliqué pour recueillir des données de formation annotées. Plusieurs méthodologies de classification des sentiments sont conçues pour effectuer l'analyse des sentiments, mais la récupération des informations n'est pas effectuée avec précision, moins efficace et moins de vitesse de convergence. Dans cet article, nous proposons un article de sentiment proposant un modèle de classification des sentiments, à savoir l'algorithme Spider Monkey Crow Optimization (SMCA), pour l'entraînement du réseau neuronal récurrent profond (DeepRNN). Dans ce procédé, l'examen des télécommunications est utilisé pour supprimer les mots d'arrêt et l'endiguement pour éliminer les données inappropriées afin de minimiser le temps de recherche de l'utilisateur. Pendant ce temps, l'extraction des fonctionnalités est effectuée à l'aide de SentiWordNet pour dériver les sentiments des commentaires. Les fonctionnalités extraites de SentiWordNet et d'autres fonctionnalités, telles que les mots allongés, la ponctuation, le hashtag et les valeurs numériques, sont utilisées dans le DeepRNN pour classer les sentiments. Pour récupérer l'examen requis, le voisin Fuzzy K-Nearest (Fuzzy-KNN) est utilisé pour récupérer l'examen basé sur une mesure de distance. Avec des évaluations et des expérimentations rigoureuses, on observe que le DeepRNN basé sur SMCA proposé fonctionne mieux en termes de précision de 97,7%, de précision de 95,5%, de rappel de 94,6% et de score F1 de 96,7%, respectivement.

El aumento epidémico en el crecimiento de las revisiones en línea hizo que la clasificación de sentimientos fuera un dominio fascinante en la investigación académica e industrial. Las revisiones ayudan a varios dominios, lo que es complicado para recopilar datos de capacitación anotados. Se diseñan varias metodologías de clasificación de sentimientos para realizar el análisis de sentimientos, pero la recuperación de información no se realiza con precisión, es menos efectiva y tiene menos velocidad de convergencia. En este artículo, proponemos un documento de sentimiento que propone un modelo de clasificación de sentimientos, a saber, el algoritmo de optimización del cuervo mono araña (SMCA), para entrenar la red neuronal recurrente profunda (DeepRNN). En este método, la revisión de telecomunicaciones se emplea para eliminar palabras de parada y derivación para eliminar datos inapropiados para minimizar el tiempo de búsqueda del usuario. Mientras tanto, la extracción de características se realiza utilizando SentiWordNet para derivar los sentimientos de las revisiones. Las características extraídas de SentiWordNet y otras características, como palabras alargadas, puntuación, hashtag y valores numéricos, se emplean en DeepRNN para clasificar los sentimientos. Para recuperar la revisión requerida, se emplea el vecino Fuzzy K-Nearest (Fuzzy-KNN) para recuperar la revisión en función de una medida de distancia. Con evaluaciones y experimentación rigurosas, se observa que el DeepRNN basado en SMCA propuesto se desempeña mejor en términos de precisión del 97.7%, precisión del 95.5%, recuerdo del 94.6% y puntaje F1 del 96.7%, respectivamente.

The epidemic increase in online reviews' growth made the sentiment classification a fascinating domain in academic and industrial research. The reviews assist several domains, which is complicated to gather annotated training data. Several sentiment classification methodologies are devised for performing the sentiment analysis, but retrieval of information is not accurately performed, less effective, and less convergence speed. In this paper, we propose a sentiment paper proposes a sentiment classification model, namely Spider Monkey Crow Optimization algorithm (SMCA), for training the deep recurrent neural network (DeepRNN). In this method, the telecom review is employed to remove stop words and stemming to eliminate inappropriate data to minimize user's seeking time. Meanwhile, the feature extraction is performed using SentiWordNet to derive the sentiments from the reviews. The extracted SentiWordNet features and other features, like elongated words, punctuation, hashtag, and numerical values, are employed in the DeepRNN for classifying sentiments. To retrieve the required review, the Fuzzy K-Nearest neighbor (Fuzzy-KNN) is employed to retrieve the review based on a distance measure. With rigorous assessments and experimentation, it is observed that the proposed SMCA-based DeepRNN performs better in terms of accuracy of 97.7%, precision of 95.5%, recall of 94.6%, and F1-score 96.7%, respectively.

جعلت الزيادة الوبائية في نمو المراجعات عبر الإنترنت تصنيف المشاعر مجالًا رائعًا في الأبحاث الأكاديمية والصناعية. تساعد المراجعات العديد من المجالات، وهو أمر معقد لجمع بيانات التدريب المشروحة. يتم وضع العديد من منهجيات تصنيف المشاعر لإجراء تحليل المشاعر، ولكن لا يتم تنفيذ استرجاع المعلومات بدقة وأقل فعالية وأقل سرعة في التقارب. في هذه الورقة، نقترح ورقة معنويات تقترح نموذج تصنيف المشاعر، وهي خوارزمية تحسين الغراب القرد العنكبوت (SMCA)، لتدريب الشبكة العصبية المتكررة العميقة (DeepRNN). في هذه الطريقة، يتم استخدام مراجعة الاتصالات لإزالة كلمات التوقف والوقف للقضاء على البيانات غير المناسبة لتقليل وقت طلب المستخدم. وفي الوقت نفسه، يتم تنفيذ استخراج الميزة باستخدام SentiWordNet لاستخلاص المشاعر من المراجعات. يتم استخدام ميزات SentiWordNet المستخرجة وغيرها من الميزات، مثل الكلمات المطولة وعلامات الترقيم وعلامات التصنيف والقيم العددية، في DeepRNN لتصنيف المشاعر. لاسترداد المراجعة المطلوبة، يتم استخدام الجار الأقرب لـ Fuzzy K - Nearest (Fuzzy - KNN) لاسترداد المراجعة بناءً على مقياس المسافة. من خلال التقييمات والتجارب الصارمة، لوحظ أن DeepRNN المقترحة المستندة إلى SMCA تؤدي أداءً أفضل من حيث الدقة بنسبة 97.7 ٪، والدقة بنسبة 95.5 ٪، والاستدعاء بنسبة 94.6 ٪، ودرجة F1 96.7 ٪، على التوالي.

Keywords

FOS: Computer and information sciences, Artificial intelligence, Sentiment classification, Web Data Extraction, Text Mining, Economics, Social Sciences, Web Data Extraction and Crawling Techniques, Sentiment analysis, Deep Learning, Artificial Intelligence, Machine learning, Sentiment Analysis, information retrieval, Dynamics of Urban Structure through Spatial Network Analysis, deep recurrent neural network, Data mining, Economic growth, Precision and recall, SentiWordNet, fuzzy K-nearest neighbours, Natural language processing, Computer science, TK1-9971, Urban Studies, Fuzzy logic, Sentiment Analysis and Opinion Mining, Emotion Recognition, Computer Science, Physical Sciences, Convergence (economics), Electrical engineering. Electronics. Nuclear engineering, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 1%
gold