Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electron spin resonance (ESR/EPR) of free radicals observed in human red hair: a new, simple empirical method of determination of pheomelanin/eumelanin ratio in hair

ESR investigation of red hair
Authors: E Chikvaidze; Tamar Partskhaladze; Temur V. Gogoladze;

Electron spin resonance (ESR/EPR) of free radicals observed in human red hair: a new, simple empirical method of determination of pheomelanin/eumelanin ratio in hair

Abstract

The definition of the concentration of pheomelanin in the skin is an issue of great interest because in the case of being influenced by UV radiation, it manifests itself as a prooxidant, causing various skin disorders including melanoma that might help to explain the relatively high incidence of skin cancer among individuals with red hair. The ESR spectra of red hair samples were investigated. It was found that at low microwave power, they are characterized by two types of spectra. Red hair ESR signals result from a superposition of two spectral shapes, a singlet spectrum as a result of the existence of eumelanin and a triplet spectrum as a result of the existence of pheomelanin. At high microwave power, only triplet spectra shape was detected, caused by saturation of the eumelanin singlet. Using different concentration ratios of black to red hair, we measured ESR spectra and plotted the ratio values in each sample against a measured 'g-factor' (experimental). We found that there is a linear relationship between these two parameters. So, it is evident that using these results, the concentration ratio of pheomelanin to eumelanin in a sample of hair can be easily determined by an almost noninvasive method. This can be considered a potential advantage for many practical activities compared with other invasive methods. The concentration dependence curve of pheomelanin (µg/mg) on gexp-factor in an ESR spectrum of hair has been designed, which allows the determination of the amount of pheomelanin in hair of any color.

Related Organizations
Subjects by Vocabulary

Medical Subject Headings: integumentary system

Microsoft Academic Graph classification: Chemistry Radical Microwave power Analytical chemistry Concentration ratio Spectral line law.invention Linear relationship Nuclear magnetic resonance law High incidence Singlet state Electron paramagnetic resonance

Keywords

General Chemistry, General Materials Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.