Sprendimo priėmimo proceso modeliavimo kontroliuojamosios intervencijos sąlygomis teorinis pagrindimas

Article English OPEN
Bakanauskienė, Irena ; Baronienė, Laura (2017)
  • Publisher: Sciendo
  • Journal: (issn: 2335-8750)
  • Related identifiers: doi: 10.1515/mosr-2017-0012
  • Subject: Management. Industrial management | Kontroliuojamoji intervencija | HD28-70 | Controlled intervention | Decision-making | Sprendimo priėmimo procesas | Decision-making process | Sprendimo priėmimas | 005 Vadyba / Management

This article is intended to theoretically justify the decision-making process model for the cases, when active participation of investing entities in controlling the activities of an organisation and their results is noticeable. Based on scientific literature analysis, a concept of controlled conditions is formulated, and using a rational approach to the decision-making process, a model of the 11-steps decision-making process under controlled intervention is presented. Also, there have been unified conditions, describing the case of controlled interventions thus providing preconditions to ensure the adequacy of the proposed decision-making process model. Šiuo straipsniu siekiama teoriškai pagrįsti sprendimo priėmimo proceso modelį atvejams, kai pastebimas aktyvus investicijas skiriančių subjektų dalyvavimas kontroliuojant veiklas bei jų rezultatus organizacijose. Atlikus mokslinės literatūros analizę, suformuluota kontroliuojamosios intervencijos samprata, sumodeliuotas sprendimo priėmimo procesas kontroliuojamosios intervencijos sąlygomis. Jis parengtas, naudojantis racionalaus sprendimo priėmimo proceso seka, ir apima 11 etapų. Taip pat unifikuotos kontroliuojamosios intervencijos atvejį apibūdinančios sąlygos, sudarančios prielaidas užtikrinti siūlomo sprendimo priėmimo proceso modelio adekvatumą.
  • References (50)
    50 references, page 1 of 5

    1. Bachkirov, A. A. (2015). Managerial Decision Making Under Specific Emotions // Journal of Management Psychology. Vol. 30, No 7, pp. 861-874. doi: 10.1108/JMP-02-2013- 0071.

    2. Bähr, C. (2008). How does Sub-National Autonomy Aefct the Eefctiveness of Structural Funds? // KYKLOS. Vol. 61, No. 1, pp. 3-18. doi: 10.1111/j.1467-6435.2008.00389.x.

    3. Barry, M. J., Edgman-Levitan, S. (2012). Shared Decision Making-Pinnacle of Patient-Centered Care // Medical Journal. Vol. 366, pp. 780-781. doi: 10.1056/NEJMp1109283.

    4. Blenko, M. W., Mankins, M. C., Rogers, P. (2010). Spotlight on Strategies for a Changing World: eTh Decision-Driven Organization // Harvard Business Review. No. 88(6), pp. 54-62. doi: 10.1162/152417302762251291.

    5. Bloom, N. (2014). Fluctuations in Uncertainty // Journal of Economic Perspectives. Vol. 28, No. 2, pp. 153-176. doi: 10.1257/jep.28.2.153.

    6. Catalani, M. S., Clerico, G. F. (2012). Decision Making Structures: Dealing with Uncertainty within Organizations. - Springer Science & Business Media, p. 167.

    7. Darškuvienė, V., Bendoraitienė, E. (2014). Stakeholder Expectations and Inuflence on Company Decisions // Taikomoji ekonomika: sisteminiai tyrimai = Applied economics: systematic research. T. 8, Nr. 2, pp. 83-96. doi: 10.7220/AESR.2335.8742.2014.8.2.5.

    8. De Neufville, R. (2003). Real Options: Dealing with Uncertainty in Systems Planning and Design // Integrated Assessment. Vol. 4, No. 1, pp. 26-34. doi: 10.1076/iaij.4.1.26.16461.

    9. Dimoka, A., Hong, Y., Pavlou, P. A. (2012). On Product Uncertainty in Online Markets: eThory and Evidence // Quarterly journal. No. 36.

    10. Drucker, P. F. (2001). eTh Eefctive Decision. - Harvard Business Review on Decision Making.

  • Metrics
    No metrics available
Share - Bookmark