Estudio epistemológico del objeto grupo: una mirada piagetiana a la luz del EOS
- Published: 01 Dec 2017 Journal: Praxis & Saber, volume 8, page 223 (issn: 2216-0159,
Copyright policy)
- Publisher: Universidad Pedagogica y Tecnologica de Colombia
- 1
- 2
Arias, F. (1999). El proyecto de investigación: guía para su elaboración. (3a ed.) Caracas: Episteme.
Brann, E. (1992). Greek Mathematical Thought and the origin of Algebra. Jacob Kleine (1968) (Trad. Eva Brann). New York: Dover Publications, Inc.
Chavarría, S.(2014). De las ecuaciones a la Teoría de Grupos, algunos obstáculos epistemológicos (Tesis de pregrado, Laureada, Licenciatura en Matemáticas y Física, Universidad del Valle, Santiago de Cali, Colombia). [OpenAIRE]
Contreras, A., Font, V., Luque, L., & Ordóñez, L. (2005). Algunas aplicaciones de la teoría de las funciones semióticas a la didáctica del análisis infinitesimal. Recherches en Didactique des Mathématiques, 25(2), 151- 186.
Dávila, R. G. (2002). El desarrollo del álgebra moderna. Parte I: El álgebra en la antigüedad. Apuntes de Historia de las Matemáticas, 1(3), 5-21.
Dávila, R. G. (2003a). El desarrollo del álgebra moderna. Parte II: El álgebra de las ecuaciones. Apuntes de Historia de las Matemáticas, 2(1), 27-37.
Dávila, R. G. (2003b). El desarrollo del álgebra moderna. Parte III: El surgimiento del álgebra abstracta. Apuntes de Historia de las Matemáticas, 2(3), 38-78.
Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Researches en Didactique des Mathématiques, 22(2-3), 237- 284. [OpenAIRE]
Godino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Researches en Didactique des Mathématiques, 14(3), 325-355. [OpenAIRE]
Godino, J. D., & Batanero, C. (1998). Clarifying the meaning of mathematical objects as a priority area of research in mathematics education. En A. Sierpinska & J. Kilpatrick (Eds.), Mathematics Education as a research domain: A search for identity (pp. 177-195). Dordrecht: Kluwer, A. P. https://doi.org/10.1007/978-94-011-5194-8_12 https://doi. org/10.1007/978-94-011-5190-0_11 [OpenAIRE]
Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135. https://doi.org/10.1007/ s11858-006-0004-1 [OpenAIRE]
Godino, J. D., Batanero, C., & Roa, R. (2005). A semiotic analysis of combinatorial problems and its resolution by university students. Educational Studies in Mathematics, 60(1), 3-36. https://doi. org/10.1007/s10649-005-5893-3
Godino, J. D., Contreras, A., & Font, V. (2006). Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática. Researches en Didactique des Mathématiques, 26(1), 39-88.
Piaget, J., & García, R. (2008). Psicogénesis e Historia de la Ciencia (11a ed.). Madrid, España: Siglo XXI editores.
Pino-Fan, L. (2013). Evaluación de la faceta epistémica del conocimiento didáctico-matemático de futuros profesores de bachillerato sobre la derivada (Tesis Doctoral, Universidad de Granada, Granada, España).
- 1
- 2