publication . Article . 2018

13 reasons why the brain is susceptible to oxidative stress

James N. Cobley; Maria Luisa Fiorello; Damian M. Bailey;
Open Access
  • Published: 01 May 2018
  • Publisher: Elsevier BV
Abstract
Graphical abstract fx1
Persistent Identifiers
Subjects
free text keywords: Mitochondria, Brain, Redox signalling, Oxidative stress, Neurodegeneration, Review Article, Organic Chemistry, Biochemistry, lcsh:Medicine (General), lcsh:R5-920, lcsh:Biology (General), lcsh:QH301-705.5, Neuroscience, Human brain, medicine.anatomical_structure, medicine, Antioxidant, medicine.medical_treatment, Chemistry, Synaptic plasticity, Neurodegeneration, medicine.disease, Premovement neuronal activity, Glutamate receptor, Oxidative stress, medicine.disease_cause, Mitochondrion
Communities
Neuroinformatics
293 references, page 1 of 20

[1] J. Mink, J. Blumenschine, D. Adams, Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis, Am. J. Physiol. - Regul. Integr. Comp. Physiol. 241 (1981) R203-R212.

[2] M.S. Goyal, M. Hawrylycz, J.A. Miller, A.Z. Snyder, M.E. Raichle, Aerobic glycolysis in the human brain is associated with development and neotenous gene expression, Cell Metab. 19 (2014) 49-57, http://dx.doi.org/10.1016/j.cmet.2013.11.020.

[3] P.J. Magistretti, I. Allaman, A cellular perspective on brain energy metabolism and functional imaging, Neuron 86 (2015) 883-901, http://dx.doi.org/10.1016/j. neuron.2015.03.035. [OpenAIRE]

[4] A. Araque, V. Parpura, R.P. Sanzgiri, P.G. Haydon, Tripartite synapses: glia, the unacknowledged partner, Trends Neurosci. 22 (1999) 208-215, http://dx.doi.org/ 10.1016/S0166-2236(98)01349-6.

[5] M. Nedergaard, B. Ransom, S.A. Goldman, New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci. 26 (2003) 523-530, http:// dx.doi.org/10.1016/j.tins.2003.08.008. [OpenAIRE]

[6] J.L. Saver, Time is brain - quantified, Stroke 37 (2006) 263-266, http://dx.doi. org/10.1161/01.STR.0000196957.55928.ab.

[7] D.M. Bailey, P. Bärtsch, M. Knauth, R.W. Baumgartner, Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological, Cell. Mol. Life Sci. 66 (2009) 3583-3594, http://dx.doi.org/ 10.1007/s00018-009-0145-9. [OpenAIRE]

[8] J.M. Fukuto, S.J. Carrington, D.J. Tantillo, J.G. Harrison, L.J. Ignarro, B.A. Freeman, A. Chen, D.A. Wink, Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species, Chem. Res. Toxicol. 25 (2012) 769-793, http://dx.doi.org/10.1021/tx2005234.

[9] D. Sawyer, J. Valentine, How super is superoxide? Acc. Chem. Res. 14 (1981) 393-400.

[10] C.C. Winterbourn, The Biological Chemistry of Hydrogen Peroxide, 1st ed., Elsevier Inc, 2013, http://dx.doi.org/10.1016/B978-0-12-405881-1.00001-X.

[11] C.C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol. 4 (2008) 278-286, http://dx.doi.org/10.1038/ nchembio.85.

[12] N. Lane, Oxygen: The Molecule That Made the World, Oxford University Press, Oxford, 2002.

[13] B. Halliwell, Biochemistry of oxidative stress, Biochem. Soc. Trans. 35 (2007) 1147-1151, http://dx.doi.org/10.1002/anie.198610581.

[14] J.K. Andersen, Oxidative stress in neurodegeneration: cause or consequence? Nat. Rev. Neurosci. 10 (2004) S18-S25, http://dx.doi.org/10.1038/nrn1434.

[15] Y.M.W. Janssen-Heininger, B.T. Mossman, N.H. Heintz, H.J. Forman, B. Kalyanaraman, T. Finkel, J.S. Stamler, S.G. Rhee, A. van der Vliet, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med. 45 (2008) 1-17, http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.011.

293 references, page 1 of 20
Abstract
Graphical abstract fx1
Persistent Identifiers
Subjects
free text keywords: Mitochondria, Brain, Redox signalling, Oxidative stress, Neurodegeneration, Review Article, Organic Chemistry, Biochemistry, lcsh:Medicine (General), lcsh:R5-920, lcsh:Biology (General), lcsh:QH301-705.5, Neuroscience, Human brain, medicine.anatomical_structure, medicine, Antioxidant, medicine.medical_treatment, Chemistry, Synaptic plasticity, Neurodegeneration, medicine.disease, Premovement neuronal activity, Glutamate receptor, Oxidative stress, medicine.disease_cause, Mitochondrion
Communities
Neuroinformatics
293 references, page 1 of 20

[1] J. Mink, J. Blumenschine, D. Adams, Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis, Am. J. Physiol. - Regul. Integr. Comp. Physiol. 241 (1981) R203-R212.

[2] M.S. Goyal, M. Hawrylycz, J.A. Miller, A.Z. Snyder, M.E. Raichle, Aerobic glycolysis in the human brain is associated with development and neotenous gene expression, Cell Metab. 19 (2014) 49-57, http://dx.doi.org/10.1016/j.cmet.2013.11.020.

[3] P.J. Magistretti, I. Allaman, A cellular perspective on brain energy metabolism and functional imaging, Neuron 86 (2015) 883-901, http://dx.doi.org/10.1016/j. neuron.2015.03.035. [OpenAIRE]

[4] A. Araque, V. Parpura, R.P. Sanzgiri, P.G. Haydon, Tripartite synapses: glia, the unacknowledged partner, Trends Neurosci. 22 (1999) 208-215, http://dx.doi.org/ 10.1016/S0166-2236(98)01349-6.

[5] M. Nedergaard, B. Ransom, S.A. Goldman, New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci. 26 (2003) 523-530, http:// dx.doi.org/10.1016/j.tins.2003.08.008. [OpenAIRE]

[6] J.L. Saver, Time is brain - quantified, Stroke 37 (2006) 263-266, http://dx.doi. org/10.1161/01.STR.0000196957.55928.ab.

[7] D.M. Bailey, P. Bärtsch, M. Knauth, R.W. Baumgartner, Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological, Cell. Mol. Life Sci. 66 (2009) 3583-3594, http://dx.doi.org/ 10.1007/s00018-009-0145-9. [OpenAIRE]

[8] J.M. Fukuto, S.J. Carrington, D.J. Tantillo, J.G. Harrison, L.J. Ignarro, B.A. Freeman, A. Chen, D.A. Wink, Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species, Chem. Res. Toxicol. 25 (2012) 769-793, http://dx.doi.org/10.1021/tx2005234.

[9] D. Sawyer, J. Valentine, How super is superoxide? Acc. Chem. Res. 14 (1981) 393-400.

[10] C.C. Winterbourn, The Biological Chemistry of Hydrogen Peroxide, 1st ed., Elsevier Inc, 2013, http://dx.doi.org/10.1016/B978-0-12-405881-1.00001-X.

[11] C.C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol. 4 (2008) 278-286, http://dx.doi.org/10.1038/ nchembio.85.

[12] N. Lane, Oxygen: The Molecule That Made the World, Oxford University Press, Oxford, 2002.

[13] B. Halliwell, Biochemistry of oxidative stress, Biochem. Soc. Trans. 35 (2007) 1147-1151, http://dx.doi.org/10.1002/anie.198610581.

[14] J.K. Andersen, Oxidative stress in neurodegeneration: cause or consequence? Nat. Rev. Neurosci. 10 (2004) S18-S25, http://dx.doi.org/10.1038/nrn1434.

[15] Y.M.W. Janssen-Heininger, B.T. Mossman, N.H. Heintz, H.J. Forman, B. Kalyanaraman, T. Finkel, J.S. Stamler, S.G. Rhee, A. van der Vliet, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med. 45 (2008) 1-17, http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.011.

293 references, page 1 of 20
Any information missing or wrong?Report an Issue