publication . Article . Other literature type . 2016

The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores.

Wishwas R. Abhyankar; Wishwas R. Abhyankar; Kiki Kamphorst; Bhagyashree N. Swarge; Bhagyashree N. Swarge; Henk van Veen; Nicole N. van der Wel; Stanley Brul; Chris G. de Koster; Leo J. de Koning;
Open Access English
  • Published: 13 Oct 2016
Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. N-14 spores prepared on solid Schaeffer's-g...
Medical Subject Headings: fungi
free text keywords: Microbiology, Original Research, Bacillus, sporulation conditions, spores, proteomics, quantitative proteomics, Microbiology (medical), Spores, Bacterial, Sporulation medium, QR1-502, Food science, MOPS, chemistry.chemical_compound, chemistry, Chemically defined medium, Bacillus subtilis, biology.organism_classification, biology, Composition (visual arts), Dipicolinic acid, Coat, Agar plate, Spore
Related Organizations
28 references, page 1 of 2

Abhyankar W. Pandey R. Ter Beek A. Brul S. De Koning L. J. De Koster C. G. (2015). Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation. Food Microbiol. 45 54–62. 10.1016/ [OpenAIRE] [DOI]

Abhyankar W. Ter Beek A. Dekker H. Kort R. Brul S. De Koster C. G. (2011). Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction. Proteomics 11 4541–4550. 10.1002/pmic.201100003 [OpenAIRE] [DOI]

Checinska A. Paszczynski A. Burbank M. (2015). Bacillus and other spore-forming genera: variations in responses and mechanisms for survival. Annu. Rev. Food Sci. Technol. 6 351–369. 10.1146/annurev-food-030713-092332 [OpenAIRE] [DOI]

Dadd A. H. Mccormick K. E. Daley G. M. (1983). Factors influencing the resistance of biological monitors to ethylene oxide. J. Appl. Bacteriol. 55 39–48. 10.1111/j.1365-2672.1983.tb02645.x [OpenAIRE] [DOI]

Driks A. (1999). Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63 1–20. [OpenAIRE]

Driks A. (2002). Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol. 10 251–254. 10.1016/S0966-842X(02)02373-9 [OpenAIRE] [DOI]

Driks A. Eichenberger P. (2016). The spore coat. Microbiol. Spectr. 4 1–22. 10.1128/microbiolspec.TBS-0023-2016 [DOI]

Gerhardt P. Marquis R. E. (1989). “Spore thermoresistance mechanisms,” in Regulation of Prokaryotic Development eds Smith I. Slepecky R. A. Setlow P. (Washington, DC: American Society for Microbiology) 43–63.

Hullo M. F. Moszer I. Danchin A. Martin-Verstraete I. (2001). CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183 5426–5430. 10.1128/JB.183.18.5426-5430.2001 [OpenAIRE] [DOI]

Imamura D. Kuwana R. Takamatsu H. Watabe K. (2010). Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J. Bacteriol. 192 518–524. 10.1128/JB.01103-09 [DOI]

Imamura D. Kuwana R. Takamatsu H. Wa tabe K. (2011). Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J. Bacteriol. 193 4075–4080. 10.1128/JB.05310-11 [DOI]

Janssen F. W. Lund A. J. Anderson L. E. (1958). Colorimetric assay for dipicolinic acid in bacterial spores. Science 127 26–27. 10.1126/science.127.3288.26 [OpenAIRE] [DOI]

Kim H. Hahn M. Grabowski P. Mcpherson D. C. Otte M. M. Wang R. (2006). The Bacillus subtilis spore coat protein interaction network. Mol. Microbiol. 59 487–502. 10.1111/j.1365-2958.2005.04968.x [OpenAIRE] [DOI]

Kooiman W. J. Bar ker A. N. Gould G. W. Wolf J. (1973). “The screw cap tube technique: a new and accurate technique for the determination of the wet heat resistance of bacterial spores,” in Spore Research eds Barker A. N. Gould G. W. Wolf J. (London: Academic Press) 87–92.

Little S. Driks A. (2001). Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol. Microbiol. 42 1107–1120. 10.1046/j.1365-2958.2001.02708.x [OpenAIRE] [DOI]

28 references, page 1 of 2
Any information missing or wrong?Report an Issue