Promoción del crecimiento en plantas de Capsicum annuum por nanopartículas de óxido de zinc
- Published: 01 Sep 2016
- Publisher: Universidad de LaSalle Bajio
Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., José-Yacamán, M., PeraltaVidea, J.R. y Gardea-Torresdey, J.L. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil.
Science of the Total Environment, 515: 60-69.
Burman, U., Saini, M. y Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry, 95: 605- 612.
(2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity.The Plant Cell, 24: 275-287.
Dimkpa, C.O., McLean, J.E., Britt, D.W. y Anderson, A.J. (2015). Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology, 24: 119-129.
Ditta, A., Arshad, M., y Ibrahim, M. (2015). Nanoparticles in sustainable agricultural crop production: Applications and Perspectives. In Nanotechnology and Plant Sciences (pp. 55-75). [OpenAIRE]
Dubey, A. y Mailapalli, D.R. (2016). Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In Sustainable Agriculture Reviews (pp. 307-330). Springer International Publishing. [OpenAIRE]
Duran, N. y Marcato, P.D. (2013). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48: 1127-1134.
Grillo, R., Abhilash, P.C. y Fraceto, L.F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16: 1231-1234.
He, L., Liu, Y., Mustapha, A. y Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166: 207-215.
Hoagland, D.R. y Arnon, D.I. (1950). The water-culture method for growing plants without soil.
Circular and California Agricultural Experiment Station, 347: 32-33.
Kumar, G.D., Natarajan, N. y Nakkeeran, S. (2016). Antifungal activity of nanofungicide Trifloxystrobin 25%+ Tebuconazole 50% against Macrophomina phaseolina. African Journal of Microbiology Research, 10: 100-105.
Liu, R. y Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514: 131-139.
Liu, R., Zhang, H. y Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) Seed germination: Nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227: 1-14.
Related research
Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., José-Yacamán, M., PeraltaVidea, J.R. y Gardea-Torresdey, J.L. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil.
Science of the Total Environment, 515: 60-69.
Burman, U., Saini, M. y Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry, 95: 605- 612.
(2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity.The Plant Cell, 24: 275-287.
Dimkpa, C.O., McLean, J.E., Britt, D.W. y Anderson, A.J. (2015). Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology, 24: 119-129.
Ditta, A., Arshad, M., y Ibrahim, M. (2015). Nanoparticles in sustainable agricultural crop production: Applications and Perspectives. In Nanotechnology and Plant Sciences (pp. 55-75). [OpenAIRE]
Dubey, A. y Mailapalli, D.R. (2016). Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In Sustainable Agriculture Reviews (pp. 307-330). Springer International Publishing. [OpenAIRE]
Duran, N. y Marcato, P.D. (2013). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48: 1127-1134.
Grillo, R., Abhilash, P.C. y Fraceto, L.F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16: 1231-1234.
He, L., Liu, Y., Mustapha, A. y Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166: 207-215.
Hoagland, D.R. y Arnon, D.I. (1950). The water-culture method for growing plants without soil.
Circular and California Agricultural Experiment Station, 347: 32-33.
Kumar, G.D., Natarajan, N. y Nakkeeran, S. (2016). Antifungal activity of nanofungicide Trifloxystrobin 25%+ Tebuconazole 50% against Macrophomina phaseolina. African Journal of Microbiology Research, 10: 100-105.
Liu, R. y Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514: 131-139.
Liu, R., Zhang, H. y Lal, R. (2016). Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) Seed germination: Nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227: 1-14.