publication . Article . 2016


Jerzy Balicki; Piotr Dryja; Waldemar Korłub; Piotr Przybyłek; Maciej Tyszka; Marcin Zadroga; Marcin Zakidalski;
Open Access English
  • Published: 01 Jun 2016 Journal: Contemporary Economy (issn: 2082-677X, eissn: 2082-677X, Copyright policy)
  • Publisher: University of Gdansk
Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.
free text keywords: artificial neural networks, share investment on the stock market, evolutionary-neural method, Economics as a science, HB71-74
Download from
72 references, page 1 of 5

6 Ferdousi Z., Maeda A.: Anomaly Detection Using Unsupervised Profiling Method in Time Series Data, Proc. Of 10th Conference on Advances in Databases and Information Systems, Tesaloniki 2006.

7 Pietrzak E., Markiewicz M. (red.): Finanse, bankowość i rynki finansowe, Wyd. Uniwersytetu Gdańskiego, Gdańsk 2006, s. 27.

8 Staniec I., Zastosowanie sztucznych sieci neuronowych i wybranych metod statystycznych do wspomagania decyzji kredytowych, Zastosowania metod statystycznych w badaniach naukowych II, StatSoft Polska, Kraków 2003, s. 20.

9 Yobas M.B., Crook J.N., Ross P.: Credit scoring using neural and evolutionary techniques. IMA Journal of Mathematics Applied in Business and Industry, Vol. 11, 2000, p. 112. [OpenAIRE]

10 Zan H. et al.: Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, vol. 37, 2004, ss. 543-558. [OpenAIRE]

11 Benchmark z danymi kredytowymi,, dostęp: 2.09.2015.

12 Brown C.: Technical Analysis for the Trading Professional, Second Edition: Strategies and Techniques for Today's Turbulent Global Financial Markets, The McGrawHill Companies, New York 2011, s. 226.

13 Oet M., Eiben R., Bianco T., Gramlich D., Ong S., Wang J.: SAFE: an early warning system for systemic banking risk. Proc. of the 24th Australasian Finance and Banking Conference, SSRN, 2011, p. 243. [OpenAIRE]

17 Mylonakis J., Diacogiannis G., Evaluating the Likelihood of Using Linear Discriminant Analysis as a Commercial Bank Card Owners Credit Scoring Model, Int. Business Research, Vol. 3, No. 2, 2010, s. 43. [OpenAIRE]

18 Majer I., Application scoring: logit model approach and the divergence method compared, Department of Applied Econometrics Working Papers, Working Paper No. 10-06, 2006, s. 27.

19 Henley W.E., Hand D.J., A k-nearest-neighbour Classifier for assessing consumer credit risk, The Statistician, Volume 45, Issue 1 (1996), pp. 75 - 95, s. 77.

20 Yobas M.B., Crook J.N., Ross P., Credit scoring using neural and evolutionary techniques, IMA Journal of Mathematics Applied in Business and Industry, (2000) 11, pp. 111-125, s. 121. [OpenAIRE]

21 Srivastava R. P., Automating judgmental decisions using neural networks: a model for processing business loan applications, Proceedings of the 1992 ACM annual conference on Communications, pp. 351-357, s. 355

22 „Facebook patent: Your friends could help you get a loan - or not”,, dostęp 6 marca 2016r.

23 Iwanicz-Drozdowska M., Edukacja finansowa i świadomość, Oficyna Wydawnicza Szkoły Głównej Handlowej w Warszawie, Warszawa 2011r, rozdział: „Metody pomiaru LGD dla kredytów detalicznych”.

72 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue